مدیریت ضایعات و پسماند های کشاورزی با استفاده از علم نانو

نویسندگان

  • حکمت اله غلامی ونوول کارشناس کشاورزی و کارشناس ارشد شیمی معدنی نویسنده

کلمات کلیدی:

ضایعات, زباله کشاورزی, بیوچار, نانومواد

چکیده

کشاورزی، فعالیت های گوناگونی را در بر می گیرد که خاک را برای حمایت از بذرها یا گیاهچه ها تا زمان برداشت، آماده می کنند. برخی از این فعالیت های کشاورزی، منابع عمدۀ آلودگی در بخش کشاورزی هستند. بنابراین، تجمع ضایعاتِ کشاورزی که مدیریت سوء داشته اند، مشکلات زیست محیطی، به ویژه در کشورهای در حال توسعه، ایجاد نموده است، ضایعات کشاورزی بقایایی هستند که در حین تولیدات کشاورزی و پس از برداشت میوه و سبزیجات و فرآوری آنها، و همچنین محصولات جانبی صنایع تبدیلی انگور، موز، زیتون و شیر به دست می آیند. این ضایعات زمانی که به جای سوزاندن در فضای باز که باعث ایجاد مشکلات زیست محیطی متعددی مانند تخریب خاک و آلودگی هوا می شود، به کاربردهای با ارزش مانند کمپوست، بیوچار، جاذب برای حذف آلاینده ها از محیط زیست و کودهای آلی تبدیل شوند، می توانند به عنوان گنجی ارزشمند تلقی شوند. دفع زباله های کشاورزی در محل های دفن زباله و تخلیه آن ها در فضای باز، رویه رایجی در کشورهای در حال توسعه است که منجر به تولید مقادیر زیادی خاکستر می شود که می تواند عمدتا به دلیل آلودگی آب های زیرزمینی، مشکلات جدی برای سلامتی و محیط زیست ایجاد کند. مدیریت رایج ضایعات کشاورزی ممکن است شامل موارد متعددی مانند تولید زیستی نانوذرات، محصولات بیوتکنولوژی، کمپوست سازی و تولید سوخت زیستی باشد. علاوه بر این، ترکیبات بیواکتیو زیادی را می توان از ضایعات کشاورزی به دست آورد که کاربردهای زیادی در زمینه های مواد غذایی کاربردی، دارویی و آرایشی دارد. مدیریت نانو ضایعات کشاورزی ممکن است شامل استفاده از فناوری نانو برای تبدیل ضایعات کشاورزی به یک محصول با ارزش باشد. این موضوع به خصوص تحت دیدگاه زیست اقتصاد سبز و پایدار، همچنان دارای سوالات زیادی است.

بیوگرافی نویسنده

  • حکمت اله غلامی ونوول، کارشناس کشاورزی و کارشناس ارشد شیمی معدنی

           

مراجع

1. Abdelhady HH, Elaza HA, Ewais EM, Saber M, El- Deab MS (2020) Efficient catalytic production of biodiesel using nano-sized sugar beet agro- industrial waste. Fuel 261, 116481. https://doi.org/10.1016/j.fuel.2019.116481.

2. Adebisi JA, Agunsoye JO, Ahmed II, Bello SA, Haris M, Ramakokovhu MM, Hassan SB (2020) Production of silicon nanoparticles from selected agricultural wastes. Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2020.03.658.

3. Ahamed A, Vallam P, Iyer NS, Veksha A, Bobacka J, LisakG (2021) Life cycle assessment of plastic grocery bags and their alternatives in cities with confined waste management structure: A Singapore case study. Journal of Cleaner Production 278, 123956. https://doi.org/10.1016/j.jclepro.2020.123956.

4. Ahmad MR, Chen B, Duan H (2020) Improvement effect of pyrolyzed agro-food biochar on the properties of magnesium phosphate cement. Science of the Total Environment 718, 137422. https://doi.org/10.1016/j.scitotenv.2020.137422

5. Akhayere E, Essien EA, Kavaz D (2019) Effective and reusable nano-silica synthesized from barley and wheat grass for the removal of nickel from agricultural wastewater. Environmental Science and Pollution Research 26:25802–25813 https://doi.org/10.1007/s11356-019-05759-x.

6. An VN, Nhan HTC, Tap TD,·Van TTT, Viet PV, Hieu LV (2020) Extraction of High Crystalline Nanocellulose from Biorenewable Sources of Vietnamese Agricultural Wastes. Journal of Polymers and the Environment 28, 1465-1474 https://doi.org/10.1007/s10924-020-01695-x.

7. Anto S, Sudhakar MP, Ahamed TS, Samuel MS, Mathimani T, Brindhadevi K, Pugazhendhi A (2021) Activation strategies for biochar to use as an efficient catalyst in various applications. Fuel 285, 119205. https://doi.org/10.1016/j.fuel.2020.119205.

8. Ardebili SMS, Khademalrasoul A (2020) An assessment of feasibility and potential of gaseous biofuel production from agricultural/animal wastes: a case study. Biomass Conversion and Biorefinery, https:// doi.org/10.1007/s13399-020-00901-z.

9. Arun KB, Madhavan A, Sindhu R, Binod P, Pandey A, Reshmy R, Sirohi R (2020) Remodeling agro- industrial and food wastes into value-added bioactives and biopolymers. Industrial Crops & Products 154, 112621. https://doi.org/10.1016/j. indcrop.2020.112621.

10. Athinarayanan J, Jaafari SAAH, Periasamy VS, Almanaa TNA, Alshatwi AA (2020) Fabrication of Biogenic Silica Nanostructures from Sorghum bicolor Leaves for Food Industry Applications. Silicon,https://doi. org/10.1007/s12633-020-00379-4.

11. Banu SS, Karthikeyan J, Jayabalan P (2020) Effect of agro-waste on strength and durability properties of concrete. Construction and Building Materials 258, 120322. https://doi.org/10.1016/j. conbuildmat.2020.120322.

12. Bastos RRC, Corrêa APL, da Luz PTS, Filho GNR, Zamian JR, da Conceição LRV (2020) Optimization of biodiesel production using sulfonated carbon- based catalyst from an amazon agro-industrial waste. Energy Conversion and Management 205, 112457. https://doi.org/10.1016/j.enconman.2019.112457.

13. Bediako JK, Sarkar AK, Lin S, Zhao Y, Song M-H, Choi J-W, Cho C-W, Yun Y-S (2019) Characterization of the residual biochemical components of sequentially extracted banana peel biomasses and their environmental remediation applications. Waste Management 89, 141–153. https://doi. org/10.1016/j.wasman.2019.04.009.

14. Ben-OthmanS, Jõudu I, Bhat R (2020) Bioactives from Agri-Food Wastes: Present Insights and Future Challenges. Molecules. 25 (3), 510. doi: 10.3390/ molecules25030510.

15. Bhat VS, Kanagavalli P, Sriram G, Prabhu BR, John NS, Veerapandian M, Kurkurie M, Hegde G (2020) Low cost, catalyst free, high performance supercapacitors based on porous nano carbon derived from agriculture waste. Journal of Energy Storage 32, 101829. https://doi.org/10.1016/j. est.2020.101829.

16. Bhatt K, Lal S, Srinivasan R, Joshi B (2020) Bioconversion of agriculture wastes to produce α- amylase from Bacillus velezensis KB 2216: Purification and characterization. Biocatalysis and Agricultural Biotechnology 28, 101703. https://doi. org/10.1016/j.bcab.2020.101703.

17. Bhushan S, Rana MS, Mamta, Nandan N, Prajapati SK (2019) Energy harnessing from banana plant wastes: A review. Bioresource Technology Reports 7, 100212. https://doi.org/10.1016/j. biteb.2019.100212.

18. Bolzonella D, Battista F, Mattioli A, Nicolato C, Frison N, Lampis S (2020) Biological thermophilic post hydrolysis of digestate enhances the biogas production in the anaerobic digestion of agro- waste. Renewable and Sustainable Energy Reviews 134, 110174. https://doi.org/10.1016/j. rser.2020.110174.

19. Bongao HC, Gabatino RRA, Arias CFH, Magdaluyo Jr ER (2020) Micro/nanocellulose from waste Pili (Canarium ovatum) pulp as a potential anti-ageing ingredient for cosmetic formulations. Materials Today: Proceedings 22, 275–280.

20. Campos P, Miller AZ, Knicker H, Costa-Pereira MF, Merino A, De la Rosa JM (2020) Chemical, physical and morphological properties of biochars produced from agricultural residues: Implications for their use as soil amendment Waste Management 105, 256– 267. https://doi.org/10.1016/j.wasman.2020.02.013

21. Chakraborty V, Das P (2020) Synthesis of nano- silica-coated biochar from thermal conversion of sawdust and its application for Cr removal: kinetic modelling using linear and nonlinear method and modelling using artificial neural network analysis. Biomass Conv. Bioref., https://doi.org/10.1007/ s13399-020-01024-1.

22. Chaturvedi S, Kumari A, Bhatacharya A, Sharma A, Nain L, Khare SK (2018) Banana peel waste management for single-cell oil production.Energ. Ecol. Environ. 3 (5), 296–303. https://doi. org/10.1007/s40974-018-0101-3.

23. Daful AG, Chandraratne MR (2020) Biochar Production From Biomass Waste-Derived Material. Encyclopedia of Renewable and Sustainable Materials, Volume 4, doi:10.1016/B978-0-12- 803581-8.11249-4, pp: 370 - 378.

24. Dai Y, Sun Q, Wang W, Lu L, Liu M, Li J, Yang S, Sun Y, Zhang K, Xu J, Zheng W, Hu Z, Yang Y, Gao Y, Chen Y, Zhang X, Gao F, Zhang Y (2018) Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review. Chemosphere, 211, 235-253. https://doi. org/10.1016/j.chemosphere.2018.06.179.

25. Dakroury GA, Allan KF, Attallah MF, El Aff EM (2020) Sorption and separation performance of certain natural radionuclides of environmental interest using silica/olive pomace nanocomposites. Journal of Radioanalytical and Nuclear Chemistry, 325, 625–639 https://doi.org/10.1007/s10967-020- 07237-y.

26. Dalpaz R, Konrad O, Cyrne CCS, Barzotto HP, Hasan C, Filho MG (2020) Using biogas for energy cogeneration: An analysis of electric and thermal energy generation from agro-industrial waste. Sustainable Energy Technologies and Assessments, 40, 100774. https://doi.org/10.1016/j. seta.2020.100774.

27. Dar RA, Parmar M, Dar EA, Sani RK, Phutela UG (2021) Biomethanation of agricultural residues: Potential, limitations and possible solutions. Renewable and Sustainable Energy Reviews, 135, 110217. https:// doi.org/10.1016/j.rser.2020.110217.

28. de Souza AG, Barbosa RFS, Rosa DS (2020) Nanocellulose from Industrial and Agricultural Waste for Further Use in PLA Composites. Journal of Polymers and the Environment, 28,1851–1868. https://doi.org/10.1007/s10924-020-01731-w.

29. Dey D, Gyeltshen T, Aich A, Naskar M, Roy A (2020) Climate adaptive crop-residue management for soil-function improvement; recommendations from field interventions at two agro-ecological zones in South Asia. Environmental Research 183, 109164. https://doi.org/10.1016/j.envres.2020.109164.

30. Donner M, Gohier R, de Vries H (2020) A new circular business model typology for creating value from agrowaste. Science of the Total Environment 716, 137065. https://doi.org/10.1016/j.scitotenv. 2020.137065.

31. Elbasiouny H, Elbanna BA, Al-Najoli E, Alsherief A, Negm S, Abou El-Nour E, Nofal A, Sharabash S (2020) Agricultural Waste Management for Climate Change Mitigation: Some Implications to Egypt. In: A. M. Negm and N. Shareef (Eds.), Waste Management in MENA Regions, Springer Water, https://doi.org/10.1007/978-3-030-18350-9_8, pp: 149-169. Springer Nature Switzerland AG.

32. El-BassiL, Azzaz AA, Jellali S, Akrout H, Marks EAN, Ghimbeu CM, Jeguirim M (2021) Application of olive mill waste-based biochars in agriculture: Impact on soil properties, enzymatic activities and tomato growth. Science of the Total Environment, 755, 142531. https://doi.org/10.1016/j. scitotenv.2020.142531.

33. Fabre E, Lopes CB, Vale C, Pereira E, Silva CM (2020) Valuation of banana peels as an effective biosorbent for mercury removal under low environmental concentrations. Science of the Total Environment, 709, 135883. https://doi.org/10.1016/j. scitotenv.2019.135883.

34. Fareed A, Zaidi SBA, Ahmad N, Hafeez I, Ali A, Ahmad MF (2020) Use of agricultural waste ashes in asphalt binder and mixture: A sustainable solution to waste management. Construction and Building Materials, 259, 120575. https://doi.org/10.1016/j. conbuildmat. 2020.120575.

35. Gabhane JW, Bhange VP, Patil PD, Bankar ST, Kumar S (2020) Recent trends in biochar production methods and its application as a soil health conditioner: a review. SN Applied Sciences, 2,1307. https://doi.org/10.1007/s42452-020-3121-5.

36. Gayathri R, Gopinath KP, Kumar PS (2021) Adsorptive separation of toxic metals from aquatic environment using agro waste biochar:Application in electroplating industrial wastewater. Chemosphere, 262, 128031. https://doi.org/10.1016/j.chemosphere.2020.128031.

37. Ge S, Yek PNY, Cheng YW, Xia C, Mahari WAW, Liew RK, Peng W, Yuan T-Q, Tabatabaei M, Aghbashlo M, Sonne C, Lam SS (2021) Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach. Renewable and Sustainable Energy Reviews, 135,110148. https:// doi.org/10.1016/j.rser.2020.110148.

38. GebremikaelMT, Ranasinghe A, Hosseini PS, Laboan B, Sonneveld E, Pipan M, Oni FE, Montemurro F, Höfte M, Sleutel S, De Neve S (2020) How do novel and conventional agri-food wastes, co- products and by-products improve soil functions and soil quality? Waste Management 113, 132–144.https://doi.org/10.1016/j.wasman.2020.05.040.

39. Georgieva VG, Gonsalvesh L, Tavlieva MP (2020) Thermodynamics and kinetics of the removal of nickel (II) ions from aqueous solutions by biochar adsorbent made from agro-waste walnut shells. J Mol Liquids 312, 112788. https://doi.org/10.1016/j. molliq. 2020.112788.

40. Gopal M, Gupta A, Hameed KS, Sathyaseelan N, Rajeela THK, Thomas GV (2020) Biochars produced from coconut palm biomass residues can aid regenerative agriculture by improving soil properties and plant yield in humid tropics. Biochar 2, 211–226. https://doi.org/10.1007/s42773-020- 00043-5.

41. Gullón P, Gullón B, Romaní A, Rocchetti G, Lorenzo JM (2020) Smart advanced solvents for bioactive compounds recovery from agri-food by-products: A review. Trends in Food Science & Technology 101, 182–197. https://doi.org/10.1016/j.tifs.2020.05.007.

42. Guo F, Bao L, Wang H, Larson SL, Ballard JH, Knotek-Smith HM, Zhang Q, Sud Y, Wang X,Hana F (2020) A simple method for the synthesis of biochar nanodots using hydrothermal reactor. MethodsX, 7, 101022. https://doi.org/10.1016/j. mex.2020.101022.

43. Guo Y, Zhang Y, Zheng D, Li M, Yue J (2020) Isolation and characterization of nanocellulose crystals via acid hydrolysis from agricultural waste-tea stalk. International Journal of Biological Macromolecules 163, 927-933. https://doi.org/10.1016/j.ijbiomac. 2020.07.009

44. Gupta C, Prakash D, Gupta S, Nazareno MA (2019) Role of Vermicomposting in Agricultural Waste Management. S. Shah et al. (eds.), Sustainable Green Technologies for Environmental Management, https://doi.org/10.1007/978-981-13-2772-8_15, pp: 283-295. Springer Nature Singapore Pte Ltd.

45. Gwenzi W, Chaukura N, Wenga T, Mtisi M (2021) Biochars as media for air pollution control systems: Contaminant removal, applications and future research directions. Science of the Total Environment, 753, 142249. https://doi. org/10.1016/j.scitotenv.2020.142249.

46. Handojo L, Pramudita D, Mangindaan D, Indarto A (2020) Application of Nanoparticles in Environmental Cleanup: Production, Potential Risks and Solutions. In: R. N. Bharagava (Ed.), Emerging Eco-friendly Green Technologies for Wastewater Treatment, Microorganisms for Sustainability, 18, https://doi.org/10.1007/978-981-15-1390-9_3, pp:45-76. Springer Nature Singapore Pte Ltd.

47. He C, Sampers I, Raes K (2021) Dietary fiber concentrates recovered from agro-industrial by-products: Functional properties and application as physical carriers for probiotics. Food Hydrocolloids 111, 106175. https:// doi.org/10.1016/j.foodhyd.2020.106175.

48. Hussein HS, Shaarawy HH, Hussien NH, Hawash SI (2019) Preparation of nano-fertilizer blend from banana peels. Bull Natl Res Cent. 43, 26.https://doi. org/10.1186/s42269-019-0058-1.

49. Ibrahim HMM (2015) Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. Journal of Radiation Research and Applied Sciences. 8 (3), 265-275.

50. Ishak NAIM, Kamarudin SK, Timmiati SN, Karim NA, Basri S (2020) Biogenic platinum from agricultural wastes extract for improved methanol oxidation reaction in direct methanol fuel cell. Journal of Advanced Research, https://doi.org/10.1016/j.jare. 2020.06.025.

51. Jannat N, Hussien A, Abdullah B, Cotgrave A (2020) Application of agro and non-agro waste materials for unfired earth blocks construction: A review. Construction and Building Materials, 254, 119346. https://doi.org/10.1016/j.conbuildmat.2020.119346

52. Javad S, Akhtar I, Naz S (2020) Nanomaterials and Agrowaste. In: S. Javad (Ed.), Nanoagronomy, https://doi.org/10.1007/978-3-030-41275-3_11, Springer Nature Switzerland AG, pp: 197-207.

53. Jiang C, Bo J, Xiao X, Zhang S, Wang Z, Yan G, Wu Y, Wong C, He H (2020) Converting waste lignin into nano-biochar as a renewable substitute of carbon black for reinforcing styrene-butadiene rubber. Waste Management, 102, 732–742. https://doi. org/10.1016/j.wasman.2019.11.019

54. John I, Yaragarla P, Appusamy A (2020) Production of Bioethanol from Banana Peel Using Isolated Cellulase from Aspergillus Niger. In: V. Sivasubramanian and S. Subramanian (Eds.), Global Challenges in Energy and Environment, Lecture Notes on Multidisciplinary Industrial Engineering, https://doi.org/10.1007/978-981-13- 9213-9_2, pp: 9-18. Springer Nature Singapore Pte Ltd.

55. Kaliannan D, Palaninaicker S, Palanivel V, Mahadeo MA, Ravindra BN, Jae-Jin S (2019) A novel approach to preparation of nano-adsorbentfrom agricultural wastes (Saccharum officinarum leaves) and its environmental application. Environmental Science and Pollution Research, 26, 5305–5314. https://doi.org/10.1007/s11356-018-3734-z.

56. Kamel R, El-Wakil NA, Dufresne A, NA Elkasabgy (2020) Nanocellulose: From an agricultural waste to a valuable pharmaceutical ingredient. International Journal of Biological Macromolecules, 163,1579- 1590.https://doi.org/10.1016/j.ijbiomac. 2020.07.242.

57. Kammoun M, Ayeb H, Bettaieb T, Richel A (2020) Chemical characterisation and technical assessment of agri-food residues, marine matrices, and wild grasses in the South Mediterranean area: A considerable inflow for biorefineries. Waste Management, 118, 247–257. https://doi.org/10.1016/j.wasman.2020.08.032

58. Kapoor R, Ghosh P, Kumar M, Sengupta S, Gupta A, Kumar SS, Vijay V, Kumar V, Vijay VK, Pant D (2020) Valorization of agricultural waste for biogas based circular economy in India: A research outlook. Bioresource Technology, 304, 123036. https://doi.org/10.1016/j.biortech. 2020.123036.

59. Kauldhar BS, Yadav SK (2018) Turning waste to wealth: A direct process for recovery of nano-silica and lignin from paddy straw agro-waste. Journal of Cleaner Production, 194, 158e166. https://doi. org/10.1016/j.jclepro. 2018.05.136

60. Khan HN, Faisal M (2020) Planning and Engineering Strategies of Agricultural Wastes and Their Remediation Strategies. In: M. Naeem et al. (Eds.), Contaminants in Agriculture, https://doi. org/10.1007/978-3-030-41552-5_10, pp: 219-232. Springer Nature Switzerland AG.

61. Koutra E, Mastropetros SG, Ali SS, Tsigkou K, Kornaros M (2021) Assessing the potential of Chlorella vulgaris for valorization of liquid digestates from agro-industrial and municipal organic wastes in a biorefinery approach. Journal of Cleaner Production 280, 124352. https://doi. org/10.1016/j.jclepro. 2020.124352

62. Kwoczynski Z, Cmelík J (2021) Characterization of biomass wastes and its possibility of agriculture utilization due to biochar production by torrefaction process. Journal of Cleaner Production, 280, 124302. https://doi.org/10.1016/j. jclepro.2020.124302.

63. Kyriakou M, Patsalou M, Xiaris N, Tsevis A, Koutsokeras L, Constantinides G, Koutinas M (2020) Enhancing bioproduction and thermotolerance in Saccharomyces cerevisiae via cell immobilization on biochar: Application in a citrus peel waste biorefinery Renewable Energy, 155, 53-64. https:// doi.org/10.1016/j.renene. 2020. 03.087.

64. Landin-Sandoval VJ, Mendoza-Castillo DI, Bonilla-Petriciolet A, Aguayo-Villarreal IA, Reynel-Avila HE, Gonzalez-Ponce HA (2020) Valorization of agri-food industry wastes to prepare adsorbents for heavy metal removal from water. Journal of Environmental Chemical Engineering, 8, 104067. https://doi.org/10.1016/j.jece.2020.104067

65. Lateef A, Nazir R, Jamila N, Alam S, Shah R, Khan MN, Saleem M, Rehman S (2019) Synthesis and characterization of environmental friendly corncob biochar based nano-composite – A potential slow release nano-fertilizer for sustainable agriculture. Environmental Nanotechnology, Monitoring & Management, 11, 100212. https://doi.org/10.1016/j. enmm. 2019.100212

66. Leite P, Sousa D, Fernandes H, Ferreira M, Costa AR, Filipe D, Gonçalves M, Peres H, Belo I, Salgado JM (2020) Recent advances in production of lignocellulolytic enzymes by solid-state fermentation of agro-industrial wastes, Current Opinion in Green and Sustainable Chemistry, https://doi.org/10.1016/j.cogsc.2020.100407

67. Leng L, Huang H, Li H, Li J, Zhou W (2019) Biochar stability assessment methods: a review. Sci. Total Environ. 647, 210–222.

68. Li S, Chen G (2020) Agricultural waste-derived superabsorbent hydrogels: Preparation, performance and socioeconomic impacts. Journal of Cleaner Production, 251, 119669. https://doi. org/10.1016/j.jclepro.2019.119669.

69. Lim JLG, Raman SN, Lai F-C, Zain MFM, Hamid R (2018) Synthesis of nano cementitious additives from agricultural wastes for the production of sustainable concrete. Journal of Cleaner Production 171, 1150- 1160. https://doi.org/10.1016/j.jclepro. 2017. 09. 143.

70. Liu G, Zheng H, Jiang Z, Zhao J, Wang Z, Pan B, Xing B (2018) Formation and Physicochemical Characteristics of Nano Biochar: Insight into Chemical and Colloidal Stability. Environ. Sci. Technol. 2018, 52, 10369−10379. DOI: 10.1021/acs.est.8b01481

71. Luhar S, Cheng T-W, Luhar I (2019) Incorporation of natural waste from agricultural and aquacultural farming as supplementary materials with green concrete: A review. Composites Part B 175, 107076. https://doi.org/10.1016/j.compositesb.2019.107076

72. Maity S, Das S, Mohapatra S, Tripathi AD, Akthar J, Pati S, Pattnaik S, Samantaray DP (2020) Growth associated polyhydroxybutyrate production by the novel Zobellellaetiwanensis strain DD5 from banana peels under submerged fermentation. International Journal of Biological Macromolecules 153, 461–469. https://doi.org/10.1016/j.ijbiomac. 2020.03.004.

73. Maji S, Dwivedi DH, Singh N, Kishor S, Gond M (2020) Agricultural Waste: Its Impact on Environment and Management Approaches. In: R. N. Bharagava (ed.), Emerging Eco-friendly Green Technologies for Wastewater Treatment, Microorganisms for Sustainability 18, https://doi.org/10.1007/978- 981-15-1390-9_15, pp: 329-351. Springer Nature Singapore Pte Ltd.

74. Maraveas C (2020) Production of Sustainable and Biodegradable Polymers from Agricultural Waste. Polymers (Basel) 12 (5), 1127. doi: 10.3390/ polym12051127.

75. MartínezTrujillo MA, BautistaRangel K, GarcíaRivero M, MartínezEstrada A, CruzDíaz MR (2020) Enzymatic saccharifcation of banana peel and sequential fermentation of the reducing sugars to produce lactic acid. Bioprocess and Biosystems Engineering, 43, 413–427. https://doi.org/10.1007/ s00449-019-02237-z.

76. Mo KH, Thomas BS, Yap SP, Abutaha F, Tan CG (2020) Viability of agricultural wastes as substitute of natural aggregate in concrete: A review on the durability-related properties. Journal of Cleaner Production, 275, 123062. https://doi.org/10.1016/j. jclepro.2020.123062.

77. Naidu Y, Siddiqui Y, Idris AS (2020) Comprehensive studies on optimization of ligno-hemicellulolytic enzymes by indigenous white rot hymenomycetes under solid-state cultivation using agro-industrial wastes. Journal of Environmental Management, 259, 110056. https://doi. org/10.1016/j.jenvman. 2019. 110056.

78. Nguyen H, Moghadam MJ, Moayedi H (2019) Agricultural wastes preparation, management, and applications in civil engineering: a review. Journal of Material Cycles and Waste Management 21, 1039– 1051 https://doi.org/10.1007/s10163-019-00872-y.

79. Nikolaou S, Vakros J, Diamadopoulos E, Mantzavinos D (2020) Sonochemical degradation of propylparaben in the presence of agro-industrial biochar. Journal of Environmental Chemical Engineering, 8, 104010. https://doi.org/10.1016/j.jece.2020.104010.

80.

Ojha N, Das N (2020) Process optimization and characterization of polyhydroxyalkanoate copolymers produced by marine Pichia kudriavzevii VIT-NN02 using banana peels and chicken feather hydrolysate. Biocatalysis and Agricultural Biotechnology, 27, 101616. https://doi.org/10.1016/j.bcab.2020.101616

81. Pandey S, Dwivedi N (2020) Utilisation and Management of Agriculture and Food Processing Waste. In: P. Mishra et al. (Eds.) Innovations in Food Technology, Springer Nature Singapore Pte Ltd. Pp: 269-288. https://doi.org/10.1007/978-981-15-6121-4_19.

82. Paul S, Kauser H, Jain MS, Khwairakpam M, Kalamdhad AS (2020) Biogenic stabilization and heavy metal immobilization during vermicomposting of vegetable waste with biochar amendment. Journal of Hazardous Materials 390, 121366. https://doi. org/10.1016/j.jhazmat. 2019. 121366

83. PeerzadaJG, R Chidambaram (2020) A Statistical Approach for Biogenic Synthesis of Nano-Silica from Different Agro-Wastes. Silicon, https://doi. org/10.1007/s12633-020-00629-5.

84. Pierri L, Gemenetzi A, Mavrogiorgou A, Regitano JB, Deligiannakis Y, Louloudi M (2020) Biochar as supporting material for heterogeneous Mn(II) catalysts: Efficient olefins epoxidation with H2O2. Molecular Catalysis, 489, 110946. https://doi. org/10.1016/j.mcat.2020.11094

85. PramanikP, Krishnan P, Maity A, Mridha N, Mukherjee A, Rai V (2020) Application of Nanotechnology in Agriculture. In: N. Dasgupta et al. (Eds.), Environmental Nanotechnology, Volume 4, Environmental Chemistry for a Sustainable World 32, https://doi.org/10.1007/978-3-030-26668-4_9, pp: 317 – 348. Springer Nature Switzerland AG.

86. Prasad M, Ranjan R, Ali A, Goyal D, Yadav A, Singh TB, Shrivastav P, Dantu PK (2020) Efficient Transformation of Agricultural Waste in India. In: M. Naeem et al. (Eds.), Contaminants in Agriculture, https://doi.org/10.1007/978-3- 030-41552-5_13, pp: 271-287. Springer Nature Switzerland AG.

87. Qi H, Zhao Y, Zhao X, Yang T, Dang Q, Wu J, Lv P, Wang H, Wei Z (2020) Effect of manganese dioxide on the formation of humin during different agricultural organic wastes compostable environments: It is meaningful carbon sequestration. Bioresource Technology, 299, 122596. https://doi.org/10.1016/j. biortech.2019.122596.

88. Rini J, Deepthi MP, Saminathan K, Narendhirakannan RT, Karmegam N, Kathireswari P (2020) Nutrient recovery and vermicompost production from livestock solid wastes with epigeic earthworms. Bioresource Technology, 313, 123690. https://doi. org/10.1016/j.biortech.2020.123690.

89. Rodriguez JA, Filho JFL, Melo, LCA de Assis IR, de Oliveira TS (2020) Influence of pyrolysis temperature and feedstock on the properties of biochars produced from agricultural and industrial wastes. Journal of Analytical and Applied Pyrolysis 149, 104839. https://doi.org/10.1016/j. jaap.2020.104839.

90. SakhiyaAK,·Anand A, Kaushal P (2020) Production, activation, and applications of biochar in recent times. Biochar, 2, 253–285. https://doi.org/10.1007/ s42773-020-00047-1.

91. Saleem M, Saeed MT (2020) Potential application of waste fruit peels (orange, yellow lemon and banana) as wide range natural antimicrobial agent. Journal of King Saud University–Science 32, 805–810. https://doi.org/10.1016/j.jksus.2019.02.013

92. Salem S, Teimouri Z, A Salem (2020) Fabrication of magnetic activated carbon by carbothermal functionalization of agriculture waste via microwave-assisted technique for cationic dye adsorption. Advanced Powder Technology, https:// doi.org/10.1016/j.apt.2020.09.007.

93. Shaaban S, Nasr M (2020) Toward Three R’s Agricultural Waste in MENA: Reduce, Reuse, and Recycle. In: A. M. Negm and N. Shareef (Eds.), Waste Management in MENA Regions, Springer Water, https://doi. org/10.1007/978-3-030-18350-9_17, pp: 337 – 353. Springer Nature Switzerland AG.

94. Siles-Castellano AB, López MJ, Jurado MM, Suárez- Estrella F, López-González JA, Estrella-González MJ, Moreno J (2020) Industrial composting of low carbon/nitrogen ratio mixtures of agri-food waste and impact on compost quality. Bioresource Technology, 316, 123946. https://doi.org/10.1016/j. biortech. 2020.123946.

95. Singh SP, Endley N (2020) Fabrication of nano-silica from agricultural residue and their application. In: A. Husen and M. Jawaid (Eds.), Nanomaterials for Agriculture and Forestry Applications. DOI: https:// doi.org/10.1016/B978-0-12-817852-2.00005-6, pp: 117-134. Elsevier Inc.

96. Suffo M, de la Mata M, Molina SI (2020) A sugar- beet waste based thermoplastic agro-composite as substitute for raw materials. Journal of Cleaner Production, 257, 120382. https://doi.org/10.1016/j. jclepro.2020.120382

97. Tamilselvi R, Ramesh M, Lekshmi GS, Bazaka O, Levchenko I, Bazaka K, Mandhakini M (2020) Graphene oxide - Based supercapacitors from agricultural wastes: A step to mass production of highly efficient electrodes for electrical transportation systems. Renewable Energy 151, 731- 739. https://doi.org/10.1016/j.renene.2019.11.072

98. Tan X, Liu Y, Gu Y, Xu Y, Zeng G, Hu X, Liu S, Wang X, Liu S, Li J (2016) Biochar-based nano- composites for the decontamination of wastewater: A review. Bioresource Technology, 212, 318-333. https//:doi.org/10.1016/j.biortech2016.04.093.

99. Thapa S, Engelken R (2020) Optimization of pelleting parameters for producing composite pellets using agricultural and agro-processing wastes by Taguchi- Grey relational analysis. Carbon Resources Conversion 3, 104–111. https://doi.org/10.1016/j.crcon.2020.05.001.

100. Torres-Carrasco M, Reinosa JJ, de la Rubia MA, Reyes E, Peralta FA, Fernández JF (2019) Critical aspects in the handling of reactive silica in cementitious materials: Effectiveness of rice husk ash vs nano- silica in mortar dosage. Construction and Building Materials 223, 360–367. https://doi.org/10.1016/j. conbuildmat. 2019.07.023.

101. Wang D, Jiang P, Zhang H, Yuan W (2020) Biochar production and applications in agro and forestry systems: A review.

102. Wang RX, Zhao Y, Xie XY, Mohamed TA, Zhu LJ, Tang Y, Chen YF, Wei ZM, (2020) Role of NH3 recycling on nitrogen fractions during sludge composting. Bioresour. Technol. 295, 122175.

103. Woodard R (2021) Waste Management in Small and Medium Enterprises (SMEs): Compliance with Duty of Care and implications for the Circular Economy. Journal of Cleaner Production 278, 123770. https:// doi.org/10.1016/j.jclepro.2020.123770.

104. Yan Y, Sarkar B, Zhou L, Zhang L, Li Q, Yang J, Bolan N (2020) Phosphorus-rich biochar produced through bean-worm skin waste pyrolysis enhances the adsorption of aqueous lead. Environmental Pollution 266, 115177. https://doi.org/10.1016/j. envpol.2020.115177

105. Zakaria ZA (2018) Sustainable Technologies for the Management of Agricultural Wastes. Applied Environmental Science and Engineering for a Sustainable Future Book Series, https://doi. org/10.1007/978-981-10-5062-6, Springer Nature Singapore Pte Ltd.

106. Zalewska M, Popowska M (2020) Antimicrobial/ Antibiotic Resistance Genes Due to Manure and Agricultural Waste Applications. In: M. Z. Hashmi (Ed.), Antibiotics and Antimicrobial Resistance Genes, Emerging Contaminants and Associated Treatment Technologies, https://doi. org/10.1007/978-3-030-40422-2_6, pp: 139 – 161. Springer Nature Switzerland AG.

107. Zhang Q, Zhang D, Xu H, Lu W, Ren X, Cai H, Lei H, Huo E, Zhao Y, Qian M, Lin X, Villota EM, Mateo W (2020) Biochar filled high-density polyethylene composites with excellent properties: Towards maximizing the utilization of agricultural wastes. Industrial Crops & Products 146, 112185. https:// doi.org/10.1016/j.indcrop. 2020.112185.

108. Zhang Y, Wang X, Ji H (2020) Stabilization process and potential of agro-industrial waste on Pb- Contaminated soil around Pb-Zn mining. Environmental Pollution 260, 114069. https://doi. org/10.1016/j.envpol.2020.114069.

دانلود

چاپ شده

2024-06-20

ارجاع به مقاله

مدیریت ضایعات و پسماند های کشاورزی با استفاده از علم نانو. (2024). پایگاه مقالات مرکز همایشهای مهندسی توسعه, 1(2). https://pubs.bcnf.ir/index.php/Articles/article/view/84

مقالات مشابه

همچنین برای این مقاله می‌توانید شروع جستجوی پیشرفته مقالات مشابه.