اثرات آنتاگونیستی پروبیوتیک‌های گرم مثبت بر باکتری‌های بیماری‌زای گرم منفی در شرایط برون‌تنی و اثر محفاظتی آن‌ها در شرایط درون‌تنی در ماهیان

Authors

  • مهدی سلطانی گروه بهداشت و بیماریهای آبزیان دانشکده دامپزشکی دانشگاه تهران Author
  • روژین فرشگر دانش آموحته دکتری دامپزشکی دانشگاه رازی کرمانشاه Author

Keywords:

باسیلوس, آنتاگونیست, پروبیوتیک, گرم مثبت, گرم منفی

Abstract

مطالعات نشان می‌دهد که باکتری‌های گرم مثبت تاثیر خوبی در پیشگیری و کنترل شیوع بیماری‌ها در آبزی پروری دارند. ترکیبات فعال زیستی متنوعی مانند باکتریوسین‌ها، سیدروفورها، آنزیم‌ها و آنتی‌بیوتیک‌ها توسط باکتری‌های گرم‌مثبت ترشح می‌شود که بر علیه بیماری‌زایی بالقوه باکتری‌های گرم منفی مانند ویبریو‌ها و آیروموناس‌ها اثرات قابل توجهی دارند به طوری که مانع از چسبندگی و تثبیت باکتری‌های بیماری زا در مخاط دستگاه گوارش می‌شوند.  دهها گونه باکتری گرم‌مثبت به ویژه باسیلوس‌ها و باکتری‌های اسید لاکتیک از دستگاه گوارش آبزیان جدا سازی شده و نقش پروبیوتیکی آن‌ها در دهها گونه ماهی مورد بررسی قرار گرفته است. تصور می‌شود که که این پروبیوتیک‌ها با پاتوژن‌های گرم منفی در دستگاه گوارش مقابله کرده و با آن‌ها اثر آنتاگونیستی دارند. اگر چه پروبیوتیک‌های گرم مثبت قادر به مهار رشد پاتوژن‌های گرم منفی در شرایط آزمایشگاهی هستند اما اطلاعات اندکی درباره  حداقل غلظت مورد نیاز برای اثر بازدارندگی پروبیوتیک‌های گرم مثبت در مقابل باکتری‌های گرم منفی بیماری‌زا وجود دارد. علاوه بر این، ترکیب پروبیوتیک‌های گرم مثبت در آبزیان می‌تواند عملکردهای فیزیولوژیکی ایمنی میزبان را بهبود بخشیده و مقاومت به بیماری را افزایش دهد. با این حال، درباره ارتباط اثرات آنتاگونیستی در شرایط برون تنی با اثرات محافظتی در شرایط درون تنی پروبیوتیک‌های گرم مثبت اطلاعاتی وجود ندارد. برای مثال میزان دز مناسب آن‌ها در بیشتر مطالعات انجام شده مورد توجه قرار نگرفته است و داده های کمی برای نشان دادن رفتار رشد آن‌ها مانند اثرات هم افزایی یا آنتاگونیستی در دسترس است. این مطالعه به بررسی اثرات آنتاگونیستی در شرایط برون تنی، اثربخشی بالینی در شرایط درون تنی و تجویز پروبیوتیک‌های گرم مثبت در مقابل پاتوژن‌های گرم منفی در ماهیان پرداخته و سوالات و تحقیقات مورد نیاز آینده را مورد بحث قرار داده است.

Downloads

Download data is not yet available.

Author Biographies

  • مهدی سلطانی, گروه بهداشت و بیماریهای آبزیان دانشکده دامپزشکی دانشگاه تهران

      

  • روژین فرشگر, دانش آموحته دکتری دامپزشکی دانشگاه رازی کرمانشاه

      

References

1. Merrifield, D.L., Balcazar, J.L., Daniels, C.L., Zhou, Z., Carnevali, O., Sun, Y.Z., Hoseinifar, S.H., Ringø, E., 2014. Indigenous lactic acid bacteria in fish and crustaceans. In: Merrifield, D.L., Ringø, E. (Eds.), Aquaculture Nutrition: Gut Health, Probiotics and Prebiotics. West Sussex, Wiley-Blackwell, pp. 128–168.

2. 2- Austin, B., Austin, D., 2016. Bacterial Fish Pathogens: Diseases of Farmed and Wild Fish. Disease in Farmed and Wild Fish. Springer Int. Pub., Switzerland, p. 723.

3. Chabrillon, M., Ouwehand, A.C., Diaz-Rosales, P., Arijo, S., Martinez-Manzanares, E., Balebona, M.C., Morinigo, M.A., 2006. Adhesion of lactic acid bacteria to mucus of farmed gilthead seabream, and interactions with fis pathogenic microorganisms. B. Eur Assoc. Fish. Pat. 26, 202–210.

4. Salinas, I., Myklebust, R., Esteban, M.A., Olsen, R.E., Meseguer, J., Ringø, E., 2008. In vitro studies of Lactobacillus delbrueckii subsp. lactis in Atlantic salmon (Salmo salar L.) foregut: tissue responses and evidence of protection against Aeromonas salmonicida subsp. salmonicida epithelial damage. Vet. Microbiol. 128, 167–177. https://doi.org/10.1016/j.vetmic.2007.10.011.

5. Zheng, C.N., Wang, W., 2017. Effects of Lactobacillus pentosus on the growth

performance, digestive enzyme and disease resistance of white shrimp, Litopenaeus

vannamei (Boone, 1931). Aqua. Res. 48, 2767–2777. https://doi.org/10.1111/

are.13110.

6. Kewcharoen, W., Srisapoome, P., 2019. Probiotic effects of Bacillus spp. from Pacific white shrimp (Litopenaeus vannamei) on water quality and shrimp growth, immune H.V. Doan et al. Aquaculture 540 (2021) 73658119 responses, and resistance to Vibrio parahaemolyticus (AHPND strains). Fish Shellfish Immunol. https://doi.org/10.1016/j.fsi.2019.09.013.

7. Bai, F., Yin, H., Chen, J., Zhang, X.H., 2008. Disruption of quorum sensing in Vibrio harveyi by the AiiA protein of Bacillus thuringiensis. Aquaculture 274 (1),36–40. https://doi.org/10.1016/j.aquaculture.2007.11.024.

8. Chu, W., Lu, F., Zhu, W., Kang, C., 2011. Isolation and characterization of new potential probiotic bacteria based on quorum-sensing system. J. Appl. Microbiol. 110 (1), 202–208. https://doi.org/10.1111/j.1365-2672.2010.04872.x.

9. Soltani, M., Lymbery, A., Song, S.K., Hossein-Shrkarabi, P., 2019a. Adjuvant effects of

medicinal herbs and probiotics for fish vaccines. Rev. Aquac. 11, 1325–1341.

https://doi.org/10.1111/raq.12295.

10. Ringø, Einar, 2020. Probiotics in shellfish aquaculture. Aquac. Fish. 5 (2), 1–27. https:// doi.org/10.1016/j.aaf.2019.12.001.

11. Ringø, E., Hoseinifar, S.H., Ghosh, K., Doan, H.V., Beck, B.R., Song, S.K., 2018. Lactic acid bacteria in finfish-An update. Front. Microbiol. 9, 1818 https://doi.org/ 10.3389/fmicb.2018.01818. H.V. Doan et al. Aquaculture 540 (2021) 73658121

12. Soltani, M., Ghosh, K., Hoseinifar, S.H., Kumar, V., Lymbery, A.L., Roy, S., Ringø, E., 2019. Genus bacillus, promising probiotics in aquaculture: Aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish. Rev. Fish.

13. O’Brien, A., Sharp, R., Russell, N.J., Roller, S., 2004. Antarctic bacteria inhibit growth of food-borne microorganisms at low temperatures. FEMS Microbiol. Ecol.

14. Papaleo, M.C., Fondi, M., Maida, I., Perrin, E., Lo Giudice, A., Michaud, L., Mangano, S., Bartolucci, G., Romoli, R., Fani, R., 2012. Sponge-associated microbial Antarctic communities exhibiting antimicrobial activity against Burkholderia cepacia complex bacteria. Biotechnol. Adv. 30 (1), 272–293. https://doi.org/10.1016/j biotechadv.2011.06.011.

15. Stiles, M.E., Holzapfel, W.H., 1997. Lactic acid bacteria of foods and their current taxonomy. Int. J. Food Microbiol. 36, 1–29. https://doi.org/10.1016/S0168-1605 (96)01233-0.

16. Tran, N.T., Li, Z., Ma, H., Zhang, Y., Zheng, H., Gong, Y., Li, S., 2020. Clostridium butyricum: a promising probiotic confers positive health benefits in aquatic animals. Rev. Aquac. 12, 2573–2589. https://doi.org/10.1111/raq.12459.

17. Stackebrandt, E., Koch, C., Gvozdiak, O., Schumann, P., 1995. Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int. J. Syst. Bacteriol. 45 (4), 682–693. https://doi.org/10.1099/00207713-45-4-682.

18. Feckaninova, A., Koscova, J., Mudronova, D., Popelka, P., Toropilova, J., 2017. The use of probiotic bacteria against Aeromonas infections in salmonid aquaculture.Aquaculture469,1–8.https://doi.org/10.1016/j.aquaculture.2016.11.042.

19. Kim, D.-H., Austin, B., 2006. Innate immune responses in rainbow trout (Oncorhynchus mykiss, Walbaum) induced by probiotics. Fish Shellfish Immunol. 21, 513–524. https://doi.org/10.1016/j.fsi.2006.02.007.

20. Bron, P.A., Tomita, S., van Swam, I.I., Remus, D.M., Meijerink, M., Wels, M., et al., 2012. Lactobacillus plantarum possesses the capability for wall teichoic acid backbone alditol switching. Microb. Cell Factories 11, 123. https://doi.org/10.1186/1475- 2859-11-123.

21. Carnevali, O., Zamponi, M.C., Sulpizio, R., Rollo, A., Nardi, M., Orpianesi, C., Silvi, S., Caggiano, M., Polzonetti, A.M., Cresci, A., 2004. Administration of probiotic strain to improve sea bream wellness during development. Aquac. Int. 12, 377–386. https:// doi.org/10.1023/b:aqui.0000042141.85977.bb.

22. Ringø, E., Løvmo, L., Kristiansen, M., Bakken, Y., Salinas, I., Myklebust, R., Olsen, R.E., Mayhew, T.M., 2010. Lactic acid bacteria vs. pathogens in the gastrointestinal tract of fish: a review. Aquac. Res. 41, 451–467. https://doi.org/10.1111/j.1365- 2109.2009. 02339.x.

23. Cheng, G., Hao, H., Xie, S., Wang, X., Dai, M., Huang, L., et al., 2014. Antibiotic alternatives: the substitution of antibiotics in animal husbandry? Front. Microbiol. 5, 217. https://doi.org/10.3389/fmicb.2014.00217.

24. Wilson, B.A., Salyers, A.A., Whitt, D.D., Winkler, M.E., 2011. Bacterial Pathogenesis: A Molecular Approach. American Soc. Microbiol. (ASM), Washington. https://www. worldcat.org/title/bacterial-pathogenesis-a-molecular-approach/oclc/710835671.

25. Ringø, E., Zhou, Z., Vecino, J.L.G., Wadsworth, S., Romero, J., Krogdahl, Å., Olsen, R.E., Dimitroglou, A., Foey, A., Davies, S., Owen, M., Lauzon, H.L., Martinsen, L.L., De Schryver, P., Bossier, P., 2016. Effect of dietary components on the gut microbiota of aquatic animals. A never-ending story? Aquac. Nutr. 22, 219–282. https://doi.org/ 10.1111/anu.12346.

26. Lemos, M.L., Balado, M., 2020. Iron uptake mechanisms as key virulence factors in bacterial fish pathogens. J. Appl. Microbiol. 129 (1), 104–115. https://doi.org/ 10.1111/jam.14595.

27. Modanloo, M., Soltanian, S., Akhlaghi, M., Hoseinifar, S.H., 2017. The effects of single or combined administration of galactooligosaccharide and Pediococcus acidilactici on cutaneous mucus immune parameters, humoral immune responses and immune related genes expression in common carp (Cyprinus carpio) fingerlings.Fish Shellfish Immunol. 70, 391–397. https://doi.org/10.1016/j.fsi.2017.09.032

28. Vine, N.G., Leukes, W.D., Kaiser, H., 2006. Probiotics in marine larviculture.FEMS Microbiol. Rev. 30, 404–427. https://doi.org/10.1111/j.1574-6976.2006. 00017.x.

29. Wang, W.Z., Morohoshi, T., Ikenoya, M., Someya, N., Ikeda, T., 2010. AiiM a novel class of N-acylhomoserine lactonase from the leaf associated bacterium Microbacterium testaceum. Appl. Environ. Microbiol. 76 (8), 2524–2530. https://doi.org/10.1128/ AEM.02738-09.

30. Byun, J.W., Park, S.C., Benno, Y., Oh, T.K., 1997. Probiotic effect of Lactobacillus sp. DS12 in flounder (Paralichthys olivaceus). J. Gen. Appl. Microbiol. 43, 305–308.

31. Balcazar, ´ J.L., Vendrell, D., de Blas, I., Ruiz-Zarzuela, I., Girones, ´ O., Múzquiz, J.L., 2007. In vitro competitive adhesion and production of antagonistic compounds by lactic acid bacteria against fish pathogens. Vet. Microbiol. 122, 373–380. https:// doi.org/10.1016/j.vetmic.2007.01.023.

32. Balcazar, ´ J.L., De Blas, I., Ruiz-Zarzuela, I., Vendrell, D., Giron´es, O., Muzquiz, J.L., 2007b. Enhancement of the immune response and protection induced by probiotic lactic acid bacteria against furunculosis in rainbow trout (Oncorhynchus mykiss). FEMS Immunol. Med. Mic. 51, 185–193. https://doi.org/10.1111/j.1574- 695X.2007. 00294.x.

33. Balcazar, ´ J.L., Vendrell, D., Ignacio, D.B., Imanol, R.-Z.I., Josel, M., Oliva, G., 2008. Characterization of probiotic properties of lactic acid bacteria isolated from

intestinal microbiota of fish. Aquaculture 278, 188–191. https://doi.org/10.1016/j.

aquaculture.2008.03.014.

34. Dhanasekaran, D., Saha, S., Thajuddin, N., Rajalakshmi, M., Panneerselvam, A., 2010.

Probiotic effect of Lactobacillus isolates against bacterial pathogens in freshwater

fish. J. Coast. Develop. 13 (2), 103–112.

35. Elayaraja, S., Annamalai, N., Mayavu, P., Balasubramanian, T., 2014. Production,

purification, and characterization of bacteriocin from Lactobacillus murinus AU06

and its broad antibacterial spectrum. Asian Pac. J. Trop. Biomed. 4, S305–S311.

https://doi.org/10.12980/APJTB.4.2014C537.

36. Nikoskelainen, S., Salminen, S., Bylund, G., Ouwehand, A.C., 2001. Characterization of the properties of human and dairy derived probiotics for prevention of infectious diseases in fish. Appl. Environ. Microbiol. 67, 2430–2435. https://doi.org/10.1128/ AEM.67.6.2430-2435.2001.

37. Aly, S.M., Ahmed, Y.A.G., Ghareeb, A.A., Mohamed, M.F., 2008a. Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections.Fish Shellfish Immunol. 25, 128–136. https://doi.org/10.1016/j.fsi.2008.03.013.

38. Al-Dohail, M.A., Hashim, R., Aliyu-Paiko, M., 2011. Evaluating the use of Lactobacillus acidophilus as a biocontrol agent against common pathogenic bacteria and the effects on the hematology parameters and histopathology in African catfish Clarias gariepinus juveniles. Aquac. Res. 42, 196–209. https://doi.org/10.1111/j.1365- 2109.2010. 02606.x.

39. Ayyat, M.S., Labib, H.M., Mahmoud, H.K., 2014. A probiotic cocktail as a growth promoter in Nile tilapia (Oreochromis niloticus). J. Appl. Aquac. 26, 208–215. https:// doi.org/10.1080/10454438.2014.934164.

40. Pirarat, N., Kobayashi, T., Katagiri, T., Maita, M., Endo, M., 2006. Protective effects and mechanisms of a probiotic bacterium Lactobacillus rhamnosus against experimental Edwardsiella tarda infection in tilapia (Oreochromis niloticus). Vet. Immunol.Immunopathol.113,339347https://doi.org/10.1016/j.vetimm.2006.06.003.

41. Harikrishnan, R., Kim, M.C., Kim, J.S., Balasundaran, C., Heo, M.S., 2011. Protective effect of herbal and probiotics enriched diet on haematological and immunity status of Oplegnathus fasciatus (Temminck and Schlegel) against Edwarsiella tarda. Fish. Shellfish Immunol.30,886–893. https://doi.org/10.1016/j.fsi.2011.01.013.

42. Liu, W., Ren, P., He, S., Xu, L., Yang, Y., Gu, Z., Zhu, Z., 2013b. Comparison of adhesive gut bacteria composition, immunity, and disease resistance in juvenile hybrid tilapia fed two different Lactobacillus strains. Fish Shellfish Immunol. 35, 54–62. https:// doi.org/10.1016/j.fsi.2013.04.010.

43. Kaktcham, P.M., Temgoua, J.-B., Zambou, N.F., Diaz-Ruiz, G., Wacher, C., PerezChabela, M.L., 2017. Quantitative analyses of the bacterial microbiota of rearing environment, tilapia and common carp cultured in earthen ponds and inhibitory activity of its lactic acid bacteria on fish spoilage and pathogenic bacteria.World J.Microbiol. Biotechnol.33(2),1–12. https://doi.org/10.1007/s11274-016-2197-y.

44. Kaktcham, P.M., Temgoua, J.B., Zambou, M.N., Diaz-Ruiz, G., Wacher, C., P´erezChabela, M.L., 2018. In Vitro evaluation of the probiotic and safety properties of bacteriocinogenic and non-bacteriocinogenic lactic acid bacteria from the intestines of Nile Tilapia and common carp for their use as probiotics in aquaculture.Probiotics Antimicrob. Prot.10(1),98–109. https://doi.org/10.1007/s12602-017-9312-8.

45. Lin, H.-L., Shiu, Y.-L., Chiu, C.-S., Huang, S.-L., Liu, C.-H., 2017. Screening probiotic candidates for a mixture of probiotics to enhance the growth performance,

immunity, and disease resistance of Asian seabass, Lates calcarifer (Bloch), against

Aeromonas hydrophila. Fish Shellfish Immunol. 60, 474–482. https://doi.org/ 10.1016/j.fsi.2016.11.026.

46. Aarti, C., Khusro, A., Arasu, M.V., Agastian, P., Al-Dhabi, N.A., 2016. Biological potency and characterization of antibacterial substances produced by Lactobacillus pentosus isolated from Hentak, a fermented fish product of North-East India. SpringerPlus 5, 1743. https://doi.org/10.1186/s40064-016-3452-2.

47. Joborn, ¨ A., Olsson, J.C., Westerdahl, A., Conway, P.L., Kjelleberg, S., 1997. Colonization in the fish intestinal tract and production of inhibitory substances in intestinal mucus and fecal extracts by Carnobacterium sp. strain K1. J. Fish Dis. 20, 383–392. https:// doi.org/10.1046/j.1365-2761.1997.00316.x.

48. Robertson, P.A.W., O’Dowd, C., Burrells, C., Williams, P., Austin, B., 2000. Use of Carnobacterium sp. as a probiotic for Atlantic salmon (Salmo salar L.) and rainbow trout (Oncorhynchus mykiss, Walbaum). Aquaculture 185, 235–243. https://doi.org/ 10.1016/S0044-8486(99)00349-X.

49. Irianto, A., Austin, B., 2002. Use of probiotics to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum). J. Fish Dis. 25, 333–342. https://doi.org/10.1046/ j.1365-2761.2002.00375.x.

50. Ringø, E., 2008. The ability of carnobacteria isolated from fish intestine to inhibit growth of fish pathogenic bacteria: a screening study. Aquac. Res. 39, 171–180. https://doi. org/10.1111/j.1365-2109.2007. 01876.x.

51. Gildberg, A., Mikkelsen, H., Sandaker, E., Ringø, E., 1997. Probiotic effect of lactic acid bacteria in the feed on growth and survival of fry of Atlantic cod (Gadus morhua). Hydrobiologia 352, 279–285. https://doi.org/10.1023/A:1003052111938.

52. Balcazar, ´ J.L., Vendrell, D., De Blas, I., Ruiz-Zarzuela, I., Múzquiz, J.L., 2009. Effect of Lactococcus lactis CLFP 100 and Leuconostoc mesenteroides CLFP 196 on Aeromonas salmonicida infection in brown trout (Salmo trutta). J. Mol. Microbiol. Biotechnol. 17, 153–157. https://doi.org/10.1159/000226588.

53. Fooks, L.J., Gibson, G.R., 2002. In vitro investigations of the effect of probiotics and prebiotics on selected human intestinal pathogens. FEMS Microbiol. Ecol. 39, 67–75. https://doi.org/10.1111/j.1574-6941.2002.tb00907.x.

54. Nguyen, T.L., Park, C.I., Kim, D.H., 2017. Improved growth rate and disease resistance in olive flounder, Paralichthys olivaceus, by probiotic Lactococcus lactis WFLU12 isolated from wild marine fish. Aquaculture 471, 113–120. https://doi.org/10.1016/j. aquaculture.2017.01.008.

55. Sun, Y., He, M., Cao, Z., Xie, Z., Liu, C., Wang, S., Guo, W., Zhang, X., Zhou, Y., 2018. Effects of dietary administration of Lactococcus lactis HNL12 on growth, innate immune response, and disease resistance of humpback grouper (Cromileptes altivelis). Fish Shellfish Immunol. 82, 296–303. https://doi.org/10.1016/j.fsi.2018.08.039.

56. Perez-Ramos, A., Mohedano, M.L., Pardo, M.A., Lopez, P., 2018. Beta-glucan-producing Pediococcus parvulus 2.6: test of probiotic and immunomodulatory properties in zebrafish models. Front. Microbiol. 9, 1684. https://doi.org/10.3389/

fmicb.2018.01684

57. Gong, L., He, H., Li, D., Cao, L., Ali Khan, T., Li, Y., Pan, L., Yan, L., Ding, X., Sun, Y., Zhang, Y., Yi, G., Hu, S., Xia, L., 2019. A new isolate of Pediococcus pentosaceus (SL001) with antibacterial activity against fish pathogens and potency in facilitating the immunity and growth performance of grass carps. Front. Microbiol. https://doi. org/10.3389/fmicb.2019.01384.

58. Allameh, S.K., Daud, H., Yusoff, Y.M., Saad, C.R., Ideris, A., 2012. Isolation, identification and characterization of Leuconostoc mesenteroides as a new probiotic from intestine of snakehead fish (Channa striatus). Afr. J. Biotechnol. 11 (16), 3810–3816. https://doi.org/10.5897/AJB11.1871.

59. El-Jenia, R., El Boura, M., Calo-Matad, P., Bohmed, ¨ K., Fernandez-Nod, ´ I.C., BarrosVel´azquezd, J., Bouhaouala-Zaharb, B., 2016. In-vitro probiotic profiling of novel Enterococcus faecium and Leuconostoc mesenteroides from Tunisian freshwater fishes. Can. J. Microbiol. 62, 60–71. https://doi.org/10.1139/cjm-2015-0481.

60. Sorroza, L., Padilla, D., Acosta, F., Roman, ´ L., Grasso, V., Vega, J., Real, F., 2012. Characterization of the probiotic strain Vagococcus fluvialis in the protection of European sea bass (Dicentrarchus labrax) against vibriosis by Vibrio anguillarum.Vet.Microbiol.155,369–373. https://doi.org/10.1016/j.vetmic.2011.09.013.

61. Roman, L., Real, F., Sorroza, L.S., Arbelo, F.A., Padilla, D., Acosta, B., Grasso, V., Bravo, J., Arbelo, F.A., 2012. The in vitro effect of probiotic Vagococcus fluvialis on the innate immune parameters of Sparus aurata and Dicentrarchus labrax. Fish Shellfish Immunol. 33 (5), 1071–1075. https://doi.org/10.1016/j.fsi.2012.06.028.

62. Sorroza, L., Real, F., Acosta, F., Acosta, B., Deniz, S., Roman, L., El-Amari, F., Padilla, D., 2013. A probiotic potential of Enterococcus gallinarum against Vibrio anguillarum infection. Fish Pathol. 48, 9–12. https://doi.org/10.3147/jsfp.48.9.

63. Chang, C.I., Liu, W.Y., 2002. An evaluation of two probiotic bacterial strains,

Enterococcus faecium SF68 and Bacillus toyoi, for reducing edwardsiellosis in cultured European eel (Anguilla anguilla). J. Fish Dis. 25, 311–315. https://doi.org/10.1046/ j.1365-2761.2002. 00365.x.

64. Tachibana, L., Tellia, L.S., Diasa, D.C., Gonçalvesb, G.S., Ishikawaa, C.M., Cavalcantea, R.B., Natoria, M.M., Hameda, S.B., Ranzani-Paivaa, M.J.T., 2020. Effect of feeding strategy of probiotic Enterococcus faecium on growth performance, hematologic, biochemical parameters and non-specific immune response of Nile tilapia. Aqua. Rep. 16, 269–280. https://doi.org/10.1016/j.aqrep.2020.100277.

65. De Vrese, M., Schrezenmeir, J., 2008. Probiotics, prebiotics, and synbiotics. Adv. Biochem. Eng. Bioethanol. 111, 1–66. https://doi.org/10.1007/10_2008_097.

66. Ringø, Einar, 2020. Probiotics in shellfish aquaculture. Aquac. Fish. 5 (2), 1–27. https:// doi.org/10.1016/j.aaf.2019.12.001.

67. Newaj-Fyzul, A., Adesiyun, A.A., Mutani, A., Ramsubhag, A., Brunt, J., Austin, B., 2007. Bacillus subtilis AB1 controls Aeromonas infection in rainbow trout (Oncorhynchus mykiss, Walbaum). J. Appl. Microbiol. 103, 1699–1706. https://doi.org/10.1111/ j.1365-2672.2007. 03402.x.

68. Martinez, J.L., Coque, T.M., Lanza, V.F., de la Cruz, F., Baquero, F., 2017. Genomic and metagenomic technologies to explore the antibiotic resistance mobilome. Ann. N. Y. Acad. Sci. 1388 (1), 26–41. https://doi.org/10.1111/nyas.13282.

69. Devirgiliis, C., Barile, S., Perozzi, G., 2011. Antibiotic resistance determinants in the interplay between food and gut microbiota. Genes Nutr. 6 (3), 275–284. https://doi. org/10.1007/s12263-011-0226-x.

70. Agersø, Y., Bjerre, K., Brockmann Johansen, E., Nielsen, B., Siezen, R., StuerLauridsen, B., Wels, M., Zeidan, A.A., 2019. Putative antibiotic resistance genes present in extant Bacillus licheniformis and Bacillus paralicheniformis strains are probably intrinsic and part of the ancient resistome. PLoS One 14 (1), e0210363. https://doi.org/10.1371/journal.pone.0210363.

71. Pieters, N., Brunt, J., Austin, B., Lyndon, A.R., 2008. Efficacy of in-feed probiotics against Aeromonas bestiarum and Ichthyophthirius multifiliisskin infections in rainbow trout (Oncorhynchus mykiss, Walbaum). J. Appl. Microbiol. 105, 723–732. https://doi.org/ 10.1111/j.1365-2672.2008. 03817.x.

72. Sakai, M., Yoshida, T., Atsuta, S., Kobayashi, M., 1995. Enhancement of resistance to vibriosis in rainbow trout, Oncorhynchus mykiss (Walbaum), by oral administration of Clostridium butyricum bacterin. J. Fish Dis. 18, 187–190. https://doi.org/10.1111/ j.1365-2761. 1995.tb00276.x.

73. Sharifuzzaman, S.M., Austin, B., 2010a. Kocuria SM1 controls vibriosis in rainbow trout (Oncorhynchus mykiss, Walbaum). J. Appl. Microbiol. 108, 2162–2170. https://doi. org/10.1111/j.1365-2672.2009.04618.x.

74. Sharifuzzaman, S.M., Austin, B., 2010b. Development of protection in rainbow trout (Oncorhynchus mykiss, Walbaum) to Vibrio anguillarum following use of the probiotic Kocuria SM1. Fish Shellfish Immunol. 29, 212–216. https://doi.org/10.1016/j. fsi.2010.03.008.

75. Irianto, A., Austin, B., 2002. Probiotics in aquaculture. J. Fish Dis. 25, 633–642.https:// doi.org/10.1046/j.1365-2761.2002.00422.x.

76. Abd El-Rhman, A.M., Khattab, Y.A.E., Shalaby, A.M.E., 2009. Micrococcus luteus and Pseudomonas species as probiotics for promoting the growth performance and health of Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol. 27, 175–180. https:// doi.org/10.1016/j.fsi.2009.03.020.

77. Sharifuzzaman, S.M., Abbass, A., Tinsley, J.W., Austin, B., 2011. Subcellular components of probiotics Kocuria SM1 and Rhodococcus SM2 induce protective immunity in rainbow trout (Oncorhynchus mykiss, Walbaum) against Vibrio anguillarum. Fish Shellfish Immunol. 30, 347–353. https://doi.org/10.1016/j.fsi.2010.11.005.

Downloads

Published

2024-12-20

How to Cite

اثرات آنتاگونیستی پروبیوتیک‌های گرم مثبت بر باکتری‌های بیماری‌زای گرم منفی در شرایط برون‌تنی و اثر محفاظتی آن‌ها در شرایط درون‌تنی در ماهیان. (2024). Development Engineering Conferences Center Articles Database, 1(4). https://pubs.bcnf.ir/index.php/Articles/article/view/177

Similar Articles

1-10 of 15

You may also start an advanced similarity search for this article.