مدل‌سازی فرآیندهای اکستروژن برای پلیمرها

Authors

  • فاطمه باقی دانشجوی کارشناسی ارشد گروه مهندسی شیمی،واحد شهرضا،دانشگاه آزاد اسلامی،شهرضا،ایران Author
  • فریبا سلطان الکتابی استادیار گروه مهندسی شیمی،واحد شهرضا،دانشگاه آزاد اسلامی،شهرضا،ایران Author

Keywords:

اکستروژن, ماردون, مدل‌سازی, پلیمر, پردازش

Abstract

 فرآیند اکستروژن یکی از تکنیک‌های صنعتی مهم است که به‌ویژه در تولید محصولات پیچیده و با دقت بالا در صنایع مختلف مانند پلاستیک، غذا، و داروسازی کاربرد دارد. این فرآیند به‌طور گسترده‌ای برای تولید قطعات و محصولات با اشکال خاص و یکنواخت، از مواد مختلف استفاده می‌شود. در زیر به بررسی دقیق‌تر این فرآیند و چالش‌ها و توسعه‌های آن در حوزه‌های مختلف پرداخته شده است.

Downloads

Download data is not yet available.

Author Biographies

  • فاطمه باقی, دانشجوی کارشناسی ارشد گروه مهندسی شیمی،واحد شهرضا،دانشگاه آزاد اسلامی،شهرضا،ایران

       

  • فریبا سلطان الکتابی, استادیار گروه مهندسی شیمی،واحد شهرضا،دانشگاه آزاد اسلامی،شهرضا،ایران

      

References

1. Chokshi, R.; Zia, H. Hot-Melt Extrusion Technique: A Review. Iran. J. Pharm. Res. 2004, 3. [CrossRef]

2. Sakai, T. Screw extrusion technology—Past, present and future. Polimery/Polymers 2013, 58. [CrossRef]

3. Leistritz, P.; Burghauser, F. German Patent 699 757 1940. Ger. Pat. 1939, 682, 787.

4. Cope, C.W. Polymer and Wood Flour Composite Extrusion. U.S. Patent 5,847,016, 8 December 1998.

5. Lewandowski, A.; Wilczy´nski, K.; Wilczy´nski, K.J.; Nastaj, A. A composite model for an intermeshing

counter-rotating twin-screw extruder and its experimental verification. Polym. Eng. Sci. 2015, 55, 2838–2848.

[CrossRef]

6. Wilczy´nski, K.; Nastaj, A.; Wilczy´nski, K.J. Melting model for starve fed single screw extrusion of

thermoplastics. Int. Polym. Process. 2013, 28, 34–42. [CrossRef]

7. Altinkaynak, A.; Gupta, M.; Spalding, M.A.; Crabtree, S.L. An investigation of the effect of screw geometry on

melting in a single-screw extruder. In Proceedings of the Annual Technical Conference—ANTEC, Conference

Proceedings, Orlando, FL, USA, 16–20 May 2010.

Polymers 2020, 12, 1306 12 of 14

8. Tadmor, Z. Fundamentals of plasticating extrusion. I. A theoretical model for melting. Polym. Eng. Sci. 1966,

6, 185–190. [CrossRef]

9. Wilczy´nski, K.; Nastaj, A.; Lewandowski, A.; Wilczy´nski, K.J. Multipurpose Computer Model for Screw

Processing of Plastics. Polym. Plast. Technol. Eng. 2012, 51, 626–633. [CrossRef]

10. Baronsky-Probst, J.; Möltgen, C.V.; Kessler, W.; Kessler, R.W. Process design and control of a twin screw hot

melt extrusion for continuous pharmaceutical tamper-resistant tablet production. Eur. J. Pharm. Sci. 2016, 87,

14–21. [CrossRef]

11. Laske, S.; Witschnigg, A.; Selvasankar, R.K.; Holzer, C. Measuring the residence time distribution in a twin

screw extruder with the use of NIR-spectroscopy. J. Appl. Polym. Sci. 2014, 131. [CrossRef]

12. Lewandowski, A. Closely Intermeshing Counter-Rotating Twin Screw Extrusion of Polymers.

Chall. Mod. Technol. 2011, 2, 36–40.

13. Jiang, Q.; Yang, J.; White, J.L. Simulation of screw pumping characteristics for intermeshing counter-rotating

twin screw extruders. Polym. Eng. Sci. 2011, 51, 37–42. [CrossRef]

14. Shah, A.; Gupta, M. Comparision of the flow in co-rotating and counter-rotating twin-screw extruders.

In Proceedings of the Annual Technical Conference—ANTEC, Conference Proceedings, Chicago, IL, USA,

16–20 May 2004.

15. Senanayake, S.A.M.A.N.S.; Clarke, B. A Simplified twin screw co-rotating food extruder: Design, fabrication

and testing. J. Food Eng. 1999, 40, 129–137. [CrossRef]

16. Christiano, J.P. Examination of the performance of a high speed single screw extruder for several

different extrusion applications. In Proceedings of the Annual Technical Conference—ANTEC, Conference

Proceedings, Orlando, FL, USA, 2–4 April 2012.

17. Lebaal, N. Robust low cost meta-modeling optimization algorithm based on meta-heuristic and knowledge

databases approach: Application to polymer extrusion die design. Finite Elem. Anal. Des. 2019, 162, 51–66.

[CrossRef]

18. Giles, H.F.; Wagner, J.R.; Mount, E.M. Extrusion: The definitive Processing Guide and Handbook;

William Andrew Inc.: Norwich, NY, USA, 2005; ISBN 0815514735.

19. Kostic, M.M.; Reifschneider, L.G. Design of Extrusion Dies. In Encyclopedia of Chemical Processing;

Taylor & Francis: Oxfordshire, UK, 2006; pp. 633–649.

20. Sakai, T.; Hashimoto, N.; Kobayashi, N. Experimental comparison between counter-rotation and co-rotation

on the twin screw extrusion performance. In Proceedings of the Annual Technical Conference—Society of

Plastics Engineers, Los Angeles, CA, USA, 4–7 May 1987.

21. White, J.L.; Kim, E.K. Twin Screw Extrusion: Technology and Principles; Hanser Publications: Cincinnati, OH,

USA, 1991.

22. Padmanabhan, B. Understanding the Extruder Processing Zone: The heart of a twin screw extruder.

Plast. Addit. Compd. 2008, 10, 30–35. [CrossRef]

23. Janssen, L.P.B.M.; Hollander, R.W.; Spoor, M.W.; Smith, J.M. Residence time distributions in a plasticating

twin screw extruder. AIChE J. 1979, 25, 345–351. [CrossRef]

24. Rauwendaal, C. Polymer Extrusion: Fifth Edition; Carl Hanser Verlag GmbH Co KG: Munich, Germany, 2014;

ISBN 9781569905166.

25. Wolf, D.; Holin, N.; White, D.H. Residence time distribution in a commercial twin-screw extruder.

Polym. Eng. Sci. 1986, 26, 640–646. [CrossRef]

26. Shon, K.; Chang, D.; White, J.L. A Comparative Study of Residence Time Distributions in a Kneader,

Continuous Mixer, and Modular Intermeshing Co-Rotating and Counter-Rotating Twin Screw Extruders.

Int. Polym. Process. 1999, 14, 44–50. [CrossRef]

27. Oh, S.I.; Wu, W.T.; Tang, J.P. Simulations of cold forging processes by the DEFORM system. J. Mater.

Process. Technol. 1992, 35, 357–370. [CrossRef]

28. Thompson, M.R.; Sun, J. Wet granulation in a twin-screw extruder: Implications of screw design. J. Pharm. Sci.

2010, 99, 2090–2103. [CrossRef]

29. Sui, G.; Fuqua, M.A.; Ulven, C.A.; Zhong, W.H. A plant fiber reinforced polymer composite prepared by a

twin-screw extruder. Bioresour. Technol. 2009, 100, 1246–1251. [CrossRef]

30. Hausnerova, B.; Honkova, N.; Lengalova, A.; Kitano, T.; Saha, P. Rheology and fiber degradation during

shear flow of carbon-fiber-reinforced polypropylenes. Polym. Sci. Ser. A 2006, 48, 951–960. [CrossRef]

Polymers 2020, 12, 1306 13 of 14

31. Kye, H.; White, J.L. Simulation of continuous polymerization in a modular intermeshing co-rotating twin

screw extruder: Application to caprolactam conversion to polyamide 6. Int. Polym. Process. 1996, 11, 129–138.

[CrossRef]

32. White, J.L.; Chen, Z. Simulation of non-isothermal flow in modular co-rotating twin screw extrusion.

Polym. Eng. Sci. 1994, 34, 229–237. [CrossRef]

33. Chen, Z.; White, J.L. Simulation of Non-isothermal Flow in Twin Screw Extrusion. Int. Polym. Process. 1994,

9, 310–318. [CrossRef]

34. Bang, D.S.; White, J.L. An improved flow simulation model for a tangential counter-rotating twin screw

extruder. Int. Polym. Process. 1996, 11, 109–114. [CrossRef]

35. Hong, M.H.; White, J.L. Simulation of Flow in an Intermeshing Modular Counter-rotating Twin Screw

Extruder: Non-Newtonian and Non-Isothermal Behavior. Int. Polym. Process. 1999, 14, 136–143. [CrossRef]

36. Yacu, W.A. Modeling a twin screw co-rotating extruder. J. Food Process. Eng. 1985, 8, 1–21. [CrossRef]

37. Wilczynski, K.; White, J.L. Melting Model for Intermeshing Counter-Rotating Twin-Screw Extruders.

Polym. Eng. Sci. 2003, 43, 1715–1726. [CrossRef]

38. Bawiskar, S.; White, J.L. Solids Conveying and Melting in a Starve Fed Self-wiping Co-rotating Twin Screw

Extruder. Int. Polym. Process. 1995, 10, 105–110. [CrossRef]

39. Redl, A.; Morel, M.H.; Bonicel, J.; Vergnes, B.; Guilbert, S. Extrusion of wheat gluten plasticized with glycerol:

Influence of process conditions on flow behavior, rheological properties, and molecular size distribution.

Cereal Chem. 1999, 76, 361–370. [CrossRef]

40. Kim, B.J.; White, J.L. Continuous polymerization of lactam-lactone block copolymers in a twin-screw extruder.

J. Appl. Polym. Sci. 2003, 88, 1429–1437. [CrossRef]

41. Wilczynski, K.; White, J.L. Modeling of twin-screw extrusion. Part I. A model of counter-rotating extrusion.

Polimery 2008, 53, 754–759. [CrossRef]

42. Farahanchi, A.; Sobkowicz, M.J. Kinetic and process modeling of thermal and mechanical degradation in

ultrahigh speed twin screw extrusion. Polym. Degrad. Stab. 2017, 138, 40–46. [CrossRef]

43. Ishikawa, T.; Amano, T.; Kihara, S.I.; Funatsu, K. Flow patterns and mixing mechanisms in the screw mixing

element of a co-rotating twin-screw extruder. Polym. Eng. Sci. 2002, 42, 925–939. [CrossRef]

44. Akdogan, H. Pressure, torque, and energy responses of a twin screw extruder at high moisture contents.

Food Res. Int. 1996, 29, 423–429. [CrossRef]

45. Wilczy´nski, K.J.; Nastaj, A.; Lewandowski, A.; Wilczy´nski, K. A composite model for starve fed single screw

extrusion of thermoplastics. Polym. Eng. Sci. 2014, 54, 2362–2374. [CrossRef]

46. Breitenbach, J. Melt extrusion: From process to drug delivery technology. Eur. J. Pharm. Biopharm. 2002, 54,

107–117. [CrossRef]

47. Puaux, J.P.; Bozga, G.; Ainser, A. Residence time distribution in a corotating twin-screw extruder. Chem. Eng.

Sci. 2000, 55, 1641–1651. [CrossRef]

48. Malik, M.; Kalyon, D.M.; Golba, J.C. Simulation of co-rotating twin screw extrusion process subject to

pressure-dependent wall slip at barrel and screw surfaces: 3D FEM analysis for combinations of forwardand reverse-conveying screw elements. Int. Polym. Process. 2014, 29, 51–62. [CrossRef]

49. Tagliavini, G.; Solari, F.; Montanari, R. CFD simulation of a co-rotating twin-screw extruder: Validation

of a rheological model for a starch-based dough for snack food. In Proceedings of the International Food

Operations and Processing Simulation Workshop, FoodOPS 2016, Larnaca, Cyprus, 26–28 September 2016.

50. Pearson, J.R.A.; Petrie, C.J.S. The flow of a tubular film. Part 1. Formal mathematical representation.

J. Fluid Mech. 1970, 40, 1–19. [CrossRef]

51. Pearson, J.R.A.; Petrie, C.J.S. The flow of a tubular film Part 2. Interpretation of the model and discussion of

solutions. J. Fluid Mech. 1970, 42, 609–625. [CrossRef]

52. Vlachopoulos, J.; Sidiropoulos, V. Polymer Film Blowing: Modeling. In Reference Module in Materials Science

and Materials Engineering; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; ISBN 9780080523583.

53. Wilczy´nski, K.; Lewandowski, A.; Wilczy´nski, K.J. Experimental study for starve-fed single screw extrusion

of thermoplastics. Polym. Eng. Sci. 2012, 52, 1258–1270. [CrossRef]

54. Gautam, A.; Choudhury, G.S. Screw configuration effects on residence time distribution and mixing in

twin-screw extruders during extrusion of rice flour. J. Food Process. Eng. 1999, 22, 263–285. [CrossRef]

55. Kao, S.V.; Allison, G.R. Residence time distribution in a twin screw extruder. Polym. Eng. Sci. 1984, 24,

645–651. [CrossRef]

Polymers 2020, 12, 1306 14 of 14

56. Altomare, R.E.; Ghossi, P. An Analysis of Residence Time Distribution Patterns in A Twin Screw Cooking

Extruder. Biotechnol. Prog. 1986, 2, 157–163. [CrossRef]

57. Van Zuilichem, D.J.; Jager, T.; Stolp, W. Residence time distributions in extrusion cooking. Part II: Single-screw

extruders processing maize and soya. J. Food Eng. 1988, 7, 197–210. [CrossRef]

58. Van Zuilichem, D.J.; Jager, T.; Stolp, W.; de Swart, J.G. Residence time distributions in extrusion cooking.

Part III: Mathematical modelling of the axial mixing in a conical, counter-rotating, twin-screw extruder

processing maize grits. J. Food Eng. 1988, 7, 197–210. [CrossRef]

59. Gogoi, B.K.; Yam, K.L. Relationships between residence time and process variables in a corotating twin-screw

extruder. J. Food Eng. 1994, 21, 177–196. [CrossRef]

60. Bravo, V.L.; Hrymak, A.N.; Wright, J.D. Numerical simulation of pressure and velocity profiles in kneading

elements of a co-rotating twin screw extruder. Polym. Eng. Sci. 2000, 40, 525–541. [CrossRef]

61. Crowther, B.G. Rubber Extrusion: Theory and Development; Rapra Technology Limited: Akron, OH, USA, 1998.

62. Gonçalves, N.D.; Teixeira, P.; Ferrás, L.L.; Afonso, A.M.; Nõbrega, J.M.; Carneiro, O.S. Design and optimization

of an extrusion die for the production of wood-plastic composite profiles. Polym. Eng. Sci. 2015, 55, 1849–1855.

[CrossRef]

63. Xianghong, W.; Guoqun, Z.; Yiguo, L.; Xinwu, M. Numerical simulation and die structure optimization of an

aluminum rectangular hollow pipe extrusion process. Mater. Sci. Eng. A 2006, 435, 266–274. [CrossRef]

64. Mount, E., III. Coextrusion equipment for multilayer flat films and sheets. In Multilayer Flexible Packaging,

2nd ed.; Wagner, J.R., Ed.; William Andrew Publishing: Norwich, NY, USA, 2010.

65. Gupta, M. Three dimensional simulation of coextrusion in a complex profile die. In Proceedings of the

Downloads

Published

2025-02-18

How to Cite

مدل‌سازی فرآیندهای اکستروژن برای پلیمرها. (2025). Development Engineering Conferences Center Articles Database, 2(7). https://pubs.bcnf.ir/index.php/Articles/article/view/368

Similar Articles

11-20 of 110

You may also start an advanced similarity search for this article.