پیادهسازی سیستمهای هوش مصنوعی برای مدیریت و کاهش مصرف انرژی در فرآیندهای تولیدی و صنعتی
کلمات کلیدی:
هوش مصنوعی, کاهش مصرف انرژی, شبکه های عصبی مصنوعی, فرآیندهای تولیدیچکیده
در این مقاله، پیادهسازی سیستمهای هوش مصنوعی برای مدیریت و کاهش مصرف انرژی در فرآیندهای تولیدی و صنعتی مورد بررسی قرار میگیرد. با افزایش هزینههای انرژی و نیاز به کاهش اثرات زیستمحیطی، بهبود بهرهوری انرژی به یک اولویت حیاتی در صنایع تبدیل شده است. این مطالعه با هدف توسعه و ارزیابی مدلهای هوش مصنوعی برای بهینهسازی مصرف انرژی در فرآیندهای تولیدی، به معرفی روشها و الگوریتمهای جدید پرداخته است. ابتدا مروری بر تحقیقات پیشین در زمینه مدیریت انرژی با استفاده از هوش مصنوعی انجام شده و سپس مدلهای مختلفی از جمله شبکههای عصبی مصنوعی، الگوریتمهای یادگیری ماشین و سیستمهای خبره معرفی و مورد استفاده قرار گرفتهاند. دادههای مربوط به مصرف انرژی از چندین فرآیند تولیدی جمعآوری و برای آموزش و ارزیابی مدلها استفاده شدهاند. نتایج حاصل نشاندهنده بهبود قابل توجهی در بهرهوری انرژی و کاهش هزینهها است. این تحقیق نشان میدهد که استفاده از هوش مصنوعی میتواند به طور مؤثری مصرف انرژی را در صنایع کاهش داده و به پایداری زیستمحیطی کمک کند. در پایان، محدودیتهای موجود در تحقیق و پیشنهاداتی برای تحقیقات آینده ارائه شده است.
مراجع
1. Smith, J., Brown, R., & Taylor, A. (2020). “Energy optimization in manufacturing using artificial neural networks”. Energy, 198, 117276.,
2. Gao,J.,Liu,Y.,& Zhang,Y. (2018).“Intelligent energy management in manufacturing: A review”. Journal of Cleaner Production, 172, 2184-2199.
3. Zhang, L., Zhou, Y., & Chen, H. (2019). “ Machine learning approaches for energy management in smart buildings”. Energy and Buildings, 203, 109408.
4. Rahman, M. M., Ahsan, A., & Islam, M. T. (2020). “Expert systems for energy management in the steel industry”. Applied Energy, 262, 114835.
5. Chen, W., Zhang, L., & Li, Y. (2018). “Reinforcement learning for energy optimization in a chemical manufacturing plant”. Energy Conversion and Management, 171, 177-186.
6. Li, X., Wang, K., & Wu, J. (2021). “AI-driven energy management for industrial IOT”. IEEE Transactions on Industrial Informatics, 17(2), 1236-1247
7.H. Li, H. Yu, N. Cao, H. Tian, and S. Cheng, "Applications of artificial intelligence in oil and gas development," Archives of Computational Methods in Engineering, vol. 28, no. 3, pp. 937-949, 2021.
8. Russell, S., & Norvig, P. (2016). Artificial Intelligence: A Modern Approach. Pearson.
9.Capehart, B. L., Turner, W. C., & Kennedy, W. J. (2020). Guide to Energy Management. Publisher:CRC Press.
10.Wang, Z., Xu, Y., & Wu, J. (2018). Artificial intelligence in energy management. Energy, 154, 98-110.
11.Goodfellow, I., Bengio, Y., & Courville, A. (2016). “Deep Learning”. Publisher: MIT Press.
12. Turban, E., Sharda, R., & Delen, D. (2015). Decision Support and Business Intelligence Systems. Publisher:Pearson.
13. Chen, J., Cao, Y., & Guo, J. (2017). "Implementation of demand response in electricity markets: An aggregated load model based on artificial intelligence and its experimental validation." IEEE Transactions on Industrial Informatics, 13(4), 2048-2059.
14. Bod-Perez, A., Mukerji, S., & Monticelli, D. (2019). "Fast and accurate power systems fault detection and classification using artificial intelligence." IEEE Transactions on Power Delivery, 34(3), 928-935.
15. Zhang, Z., Lai, J., Zhang, R., & Cheng, H. (2019). "An optimization approach for scheduling electric vehicle charging stations in smart grids." Applied Energy, 255, 113902.
16. Kusiak, A. (2019). "Machine learning in the energy sector." Proceedings of the IEEE, 107(1), 217-238.
17. Erol-Kantarci, M., & Mouftah, H. T. (2016). "Wireless sensor networks for cost-efficient residential energy management in the smart grid." IEEE Communications Magazine, 54(9), 98-105.
18. Li, Y., Chen, Z., & Meng, K. (2020). "Reinforcement learning based personalized demand response strategy for residential customers." IEEE Transactions on Sustainable Energy, 11(4), 2377-2386.
19. Naohisa TAKAHASHI and Makoto AMAMIYA.(1983)." A DATA FLOW PROCESSOR ARRAY SYSTEM : DESIGN AND ANALYSIS." Musashino Electrical Communication Laboratory Nippon Telegraph and Telephone Public Corporation 3-9-11Midoricho Musashino-shi Tokyo 180 Japan
20.Herbert T. Bandy, David E. Gilsinn.(1995)." Data management for error compensation and process control".NationalInstituteofStandardsandTechnology Gaithersburg,Maryland20899
21. Xiaolu Yi(2020)." Design and analysis of DNC production data acquisition and monitoring system".Asia Conference on Geological Research and Environmental Technology.
22. Mario José Diván.(2016)." Processing Architecture based on Measurement Metadata".International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), Sep. 7-9, 2016, AIIT, Amity University Uttar Pradesh, Noida, India.
23. Chunli Gao at al.(2018)." Design of Monitoring System Based on LabVIEW Producer/Consumer Model".Advances in Engineering Research, volume 127.
24. Zhou et al.(1991). )." Artificial Intelligence Approach to Energy Management and Control in the HVAC Process: An Evaluation,Development and Discussion".Developments in Chemical Engineering, Vol. 1, No. 1, Page 42
25. Thiele at al.(2019). )." Energy Efficiency Optimization using AutomationML modeling and an EnPI methodology".This research was funded by the German Ministry for Economy and Energy in context of the project EnEffReg, 03ET1313B.
26.zhiganov at al.(2019)." Automation of Energy Data Management - The Key to Reducing Production Costs".
27. Xu et al at el.(2021)." Multi-energy Scheduling of an Industrial Integrated Energy System by Reinforcement Learning Based Differential Evolution".DOI 10.1109/TGCN.2021.3061789, IEEE Transactions on Green Communications and Networking
28. Pelzer et al.(2016)." An innovative energy management system for the integration of volatile energy into industrial processes". Volume 1 (2016), Issue 4. 10.2495/EQ-V1-N4-339-348
29. Wang et al.(2018)." Application Analysis of Contract Energy Management in Industrial Parks".978-1-5386-8549-5/18/$31.00 ©2018 IEEE
30. Rui Branco et al.(2023)." Explainable AI in Manufacturing: an Analysis of Transparency and Interpretability Methods for the XMANAI Platform". 2023 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC).
31. Sedighimanesh et al.(2022)." Reducing Energy Consumption in Sensor-Based Internet of Things Networks Based on Multi-Objective Optimization Algorithms".10.52547/jist.15639.10.39.180.
32. Zhu et al.(2014)." A New Model for Energy Consumption Optimization under Cloud Computing and Its Genetic Algorithm"978-1-4799-7434-4/14 $31.00 © 2014 IEEE DOI 10.1109/.170 10.1109/CIS.2014.171
33. Maryasin & Plohotnyuk.(2023)." Reinforcement Learning-Based Approach to Optimization of Energy Consumption in a Building". 2023 5th International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA).
34. Jin & Han(2017)." An Energy Integrated Dispatching Strategy of Multi- energy Based on Energy Internet".IOP Conf. Series: Earth and Environmental Science 112 (2018) 012011.
35. Hasnaoui et al.(2022)." Optimization and Management of Residential Energy Load Using PSO and WOA". 2022 International Electronics Symposium (IES).
36. Kamyar & Peet.(2016)." Multi-objective dynamic programming for constrained optimization of non-separable objective functions with application in energy storage". 2016 IEEE 55th Conference on Decision and Control (CDC)
37. Kampouropoulos et al.(2016)." Multi-Carrier Optimal Power Flow of Energy Hubs by Means of ANFIS and SQP".978-1-5090-3474-1/16/$31.00 ©2016 IEEE.
38. Leithon et al.(2015)." An Evolutionary Algorithm for Energy Management in Cellular Base Stations under Time-of-Use Pricing".IEEE ICC 2015 SAC - Green Communications.