راهبردهای نوآورانه در هوشمندسازی صنعت پتروشیمی
کلمات کلیدی:
صنعت نسل 0.4, تحول دیجیتال, نوآوری, پایداری, صنایع پتروشیمیچکیده
صنعت پتروشیمی نقش مهمی در تقویت اقتصاد و پیشبرد نوآوری در سراسر جهان ایفا میکند. با این حال، با افزایش رقابت و نیاز به شیوه های پایدار عملکرد، ایجاد تحول در فرآیندهای تولید و مدیریت پتروشیمی الزامی است. چالش مبرم حفظ منابع و انرژی، تاب آوری اقتصادی در برابر تهدیدهای خارجی، افزایش بهرهوری عملیاتی، پرورش فرهنگ نوآوری، بهینهسازی هزینه و رشد پایدار در پتروشیمی، در چشم انداز صنعتی ایران اولویت اصلی می باشد. برای مرتفع سازی این اهداف، راه حل های دیجیتال برای مدیریت عرضه، فرآیندهای تولید، نوآفرینی، لجستیک، توزیع، مراحل نگهداری و تعمیر و همچنین خدمات پس از فروش مورد نیاز است. هدف از این مطالعه، بررسی پتانسیل فناوریهای هوشمند صنعت نسل 4.0 در بهبود کارایی، استفاده بهینه از منابع و پیشبرد نوآوری در بخش پتروشیمی میباشد.
مراجع
] Allioui, H., & Mourdi, Y. (2023), “Unleashing the Potential of AI: Investigating Cutting-Edge Technologies That Are Transforming Businesses.” International Journal of Computer Engineering and Data Science (IJCEDS), 3, 1-12.
[2] Alqahtani, A., Gupta, S., & Nakashima, K. (2018), “Warranty and maintenance analysis of sensor embedded products using internet of things in industry 4.0.” International Journal of Production Economics, 208. doi:10.1016/j.ijpe.2018.12.022
[3] ANYBOTICS. (2023), “ANYmal X Tested for Autonomous Robot Inspections in Ex-zones at BASF.”
[4] Bag, S., & Pretorius, J.-H. (2020), “Relationships between Industry 4.0, Sustainable Manufacturing and Circular Economy: proposal of a research framework.” International Journal of Organizational Analysis. doi:10.1108/IJOA-04-2020-2120
[5] Büchi, G., Cugno, M., & Castagnoli, R. (2020), “Smart factory performance and Industry 4.0.” Technological Forecasting and Social Change, 150, 119790. doi:10.1016/j.techfore.2019.119790
[6] Dozie, E.A., Johnson, N., Andrew, N.H., & Justine, A.C. (2023), “Revolutionizing Petrochemical Production: Unleashing the Full Potential of Industry 4.0 to Drive Efficiency, Harness Reserve and Propel Innovation.” Preprints.org.
[7] ENEOS. (2023), “ENEOS and PFN Succeed in Autonomous Operation of Petrochemical Plant Using AI Technology.” Retrieved from https://www.preferred.jp/en/news/pr20230807/:
[8] Ersa, J., & Tambunan, J. (2020), “Review Article : Smart Process Manufacturing for the Transformation and Development of Petrochemical Industry.”
[9] Fatorachian, H., & Kazemi, H. (2021), “Impact of Industry 4.0 on supply chain performance.” Production Planning & Control, 32, 63-81. doi:10.1080/09537287.2020.1712487
[10] Ghaithan, A., Khan, M., Mohammed, A., & Hadidi, L. (2021), “Impact of Industry 4.0 and Lean Manufacturing on the Sustainability Performance of Plastic and Petrochemical Organizations in Saudi Arabia.” Sustainability, 13, 11252.
[11] Goh, A. (2022), “Shell printed and deployed industry first leak repair clamp.” Retrieved from
[12] Inc., M.C. (2019), “Deep learning model predicts gas product quality and identifies quality anomalies in 20 minutes.” Retrieved from NTT Communications:
[13] Javaid, M., Haleem, A., Singh, R.P., Suman, R., & Gonzalez, E.S. (2022), “Understanding the adoption of Industry 4.0 technologies in improving environmental sustainability.” Sustainable Operations and Computers, 3, 203-217. doi:https://doi.org/10.1016/j.susoc.2022.01.008
[14] Jiao, R., Commuri, S., Panchal, J., Milisavljevic-Syed, J., Allen, J.K., Mistree, F., & Schaefer, D. (2021), “Design Engineering in the Age of Industry 4.0.” Journal of Mechanical Design, 143. doi:10.1115/1.4051041
[15] Joy, D., & Smith, D. (2019). Processing Asset Data at the Intelligent Edge: Implementation of an Industrial IoT Architecture to Drive Business Value. Paper presented at the SPE Annual Technical Conference and Exhibition.
[16] khorram niaki, M., & Nonino, F. (2016), “Additive manufacturing management: a review and future research agenda.” International Journal of Production Research, 55, 1-21. doi:10.1080/00207543.2016.1229064
[17] Min, Q., Lu, Y., Liu, Z., Su, C., & Wang, B. (2019), “Machine Learning based Digital Twin Framework for Production Optimization in Petrochemical Industry.” International Journal of Information Management, 49. doi:10.1016/j.ijinfomgt.2019.05.020
[18] Morseletto, P. (2020), “Targets for a circular economy.” Resources, Conservation and Recycling, 153, 104553. doi:https://doi.org/10.1016/j.resconrec.2019.104553
[19] Nieuwenhuis, B., Ehrenhard, M., & Prause, L. (2017), “The shift to Cloud Computing: The impact of disruptive technology on the enterprise software business ecosystem.” Technological Forecasting and Social Change, 129. doi:10.1016/j.techfore.2017.09.037
[20] Onu, P., Pradhan, A., & Mbohwa, C. (2023), “Industrial internet of things (IIoT): opportunities, challenges, and requirements in manufacturing businesses in emerging economies.” Procedia Computer Science, 217, 856-865. doi:10.1016/j.procs.2022.12.282
[21] Scheuermann, C., Verclas, S., & Bruegge, B. (2015, 19-21 Aug. 2015). Agile Factory - An Example of an Industry 4.0 Manufacturing Process. Paper presented at the 2015 IEEE 3rd International Conference on Cyber-Physical Systems, Networks, and Applications.
[22] SHOKER, I. “Taking Predictive Maintenance to the Next Level.” Retrieved from ARC Advisory Group:
[23] Singh, S., Karimipour, H., HaddadPajouh, H., & Dehghantanha, A. (2020), “Artificial Intelligence and Security of Industrial Control Systems.” Handbook of Big Data Privacy, 121-164.
[24] Vaclavova, A., Strelec, P., Horak, T., Kebisek, M., Tanuska, P., & Huraj, L. (2022), “Proposal for an IIoT Device Solution According to Industry 4.0 Concept.” Sensors, 22, 325.
[25] Yokogawa. (2021), “IT/OT Convergence: Bringing Two Worlds Together.” Retrieved from https://www.yokogawa.com/library/resources/white-papers/itot-convergence-bringing-two-worlds-together/:
[26] Yuan, X., Gu, Y., & Wang, Y. (2021), “Supervised Deep Belief Network for Quality Prediction in Industrial Processes.” IEEE Transactions on Instrumentation and Measurement, 70, 1-11. doi:10.1109/TIM.2020.3035464
[27] Zhang, W., Yang, D., & Wang, H. (2019), “Data-Driven Methods for Predictive Maintenance of Industrial Equipment: A Survey.” IEEE Systems Journal, 13, 2213-2227. doi:10.1109/JSYST.2019.2905565
[28] Zhdaneev, O.V., Korenev, V.V., & Lyadov, A.S. (2020), “Opportunities and Challenges to Deploy Industry 4.0 Technologies in the Russian Oil Refining and Petrochemical Industries.” Russian Journal of Applied Chemistry, 93, 1926-1930. doi:10.1134/S1070427220120150