ویروس اپشتین بار (EBV)  و مالتیپل اسکلروزیس (MS) : علت ، علائم ، تشخیص و درمان

Authors

  • رضا کشاورز - دانشجوی کارشناسی زیست شناسی سلولی و مولکولی دانشگاه آزاد اسلامی واحد زرقان ، زرقان Author

Keywords:

مالتیپل اسکلروزیس (MS) , ویروس اپشتین بار (EBV), درمان, سیستم عصبی مرکزی (CNS), عفونت نهفته, بیماری خود ایمنی, بیماری التهابی, بیماری عصبی, سیستم عصبی, سرطان

Abstract

مالتیپل اسکلروزیس (MS) شایع ترین بیماری التهابی و عصبی مزمن سیستم عصبی است که بر اعصاب میلین دار در سیستم عصبی مرکزی (CNS) تاثیر می گذارد و تصور می شود در افراد مستعد ژنتیکی توسط یک عامل عفونی ایجاد می شود که ویروس اپشتین بار (EBV) کاندید اصلی در این زمینه است . ویروس اپشتین بار (EBV) یک ویروس هرپس لنفوتروپیک انسانی است که نقش ثابتی در شکل گیری انواع سرطان دارد . این ویروس در همه جا حاظر است و به طور معمول منجر به عفونت های نهفته ، سرطان و بیماری خود ایمنی می شود . عفونت با ویروس اپشتین بار (EBV) مدتهاست که باعث ایجاد مالتیپل اسکلروزیس (MS) می شود . ویروس اپشتین بار (EBV) به عنوان محرک توسعه مالتیپل اسکلروزیس (MS) معرفی شده است . در این مقاله قرار است شواهد نشان دهنده اینکه ویروس اپشتین بار (EBV)  عامل ایجاد کننده مالتیپل اسکلروزیس (MS) است و عوامل خطر تاثیرگذار بر این امر و همچنین پتانسیل درمان هایی که ویروس اپشتین بار (EBV) را برای درمان مالتیپل اسکلروزیس (MS) هدف قرار می دهند بررسی کنیم.

Downloads

Download data is not yet available.

Author Biography

  • رضا کشاورز , - دانشجوی کارشناسی زیست شناسی سلولی و مولکولی دانشگاه آزاد اسلامی واحد زرقان ، زرقان

      

References

1. Young, L. S., Yap, L. F. & Murray, P. G. Epstein-Barr virus: more than 50 years old and still providing surprises. Nat. Rev. Cancer 16, 789–802 (2016).

2. Wong, Y., Meehan, M. T., Burrows, S. R., Doolan, D. L. & Miles, J. J. Estimating the global burden of Epstein-Barr virus-related cancers. J. Cancer Res. Clin. Oncol. (2021).

3. Dunmire, S. K., Verghese, P. S. & Balfour, H. H. Jr. Primary Epstein-Barr virus infection. J. Clin. Virol. 102, 84–92 (2018).

4. Fournier, B. & Latour, S. Immunity to EBV as revealed by immunedeficiencies. Curr. Opin. Immunol. 72, 107–115 (2021).

5. Laderach, F. & Munz, C. Epstein Barr virus exploits genetic susceptibility to increase multiple sclerosis risk. Microorganisms. (2021).

6. Walton, C. et al. Rising prevalence of multiple sclerosis worldwide: insights from the Atlas of MS, third edition. Mult. Scler. 26, 1816–1821 (2020).

7. Alroughani, R. & Boyko, A. Pediatric multiple sclerosis: a review. BMC Neurol. 18, 27 (2018).

8. Rodgers, M. M. et al. Gait characteristics of individuals with multiple sclerosis before and after a 6-month aerobic training program. J. Rehabil. Res. Dev. 36, 183–188 (1999).

9. Thompson, A. J. et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 17, 162–173 (2018).

10. Brodin, P. et al. Variation in the human immune system is largely driven by non-heritable influences. Cell 160, 37–47 (2015).

11. Soldan, S. S. & Jacobson, S. in Neurotropic Viral Infections (ed. Reiss, C.) 175–220 (Springer, 2016).

12. Ruprecht, K. The role of Epstein-Barr virus in the etiology of multiple sclerosis: a current review. Expert Rev. Clin. Immunol. 16, 1143–1157 (2020).

13. Lanz, T. V. et al. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature 603, 321–327 (2022).

14. Bjornevik, K. et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 375, 296–301 (2022).

15. Bar-Or, A., Banwell, B., Berger, J. R. & Lieberman, P. M. Guilty by association: Epstein-Barr virus in multiple sclerosis. Nat. Med. 28, 904–906 (2022).

16. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202–209 (2014).

17. Kanda, T., Yajima, M. & Ikuta, K. Epstein-Barr virus strain variation and cancer. Cancer Sci. 110, 1132–1139 (2019).

18. Thorley-Lawson, D. A. EBV persistence–introducing the virus. Curr. Top. Microbiol. Immunol. 390, 151–209 (2015).

19. Balfour, H. H. Jr. et al. Age-specific prevalence of Epstein-Barr virus infection among individuals aged 6-19 years in the United States and factors affecting its acquisition. J. Infect. Dis. 208, 1286–1293 (2013).

20. Chandran, B. & Hutt-Fletcher, L. in Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis (eds Arvin, A. et al.) (Cambridge Univ. Press, 2007).

21. Thorley-Lawson, D. A. Epstein-Barr virus: exploiting the immune system. Nat. Rev. Immunol. 1, 75–82 (2001).

22. Thompson, M. P. & Kurzrock, R. Epstein-Barr virus and cancer. Clin. Cancer Res. 10, 803–821 (2004).

23. Hassani, A., Corboy, J. R., Al-Salam, S. & Khan, G. Epstein-Barr virus is present in the brain of most cases of multiple sclerosis and may engage more than just B cells. PLoS ONE 13, e0192109 (2018).

24. Gianella, S. et al. Effect of cytomegalovirus and Epstein-Barr virus replication on intestinal mucosal gene expression and microbiome composition of HIV-infected and uninfected individuals. AIDS 31, 2059–2067 (2017).

25. Speck, P., Haan, K. M. & Longnecker, R. Epstein-Barr virus entry into cells. Virology 277, 1–5 (2000).

26. Xiao, J., Palefsky, J. M., Herrera, R. & Tugizov, S. M. Characterization of the Epstein-Barr virus glycoprotein BMRF-2. Virology 359, 382–396 (2007).

27. Xiao, J., Palefsky, J. M., Herrera, R., Berline, J. & Tugizov, S. M. EBV BMRF-2 facilitates cell-to-cell spread of virus within polarized oral epithelial cells. Virology 388, 335–343 (2009).

28. Zhang, H. et al. Ephrin receptor A2 is an epithelial cell receptor for Epstein-Barr virus entry. Nat. Microbiol. 3, 1–8 (2018).

29. Stubbins, R. J. et al. Epstein-Barr virus associated smooth muscle tumors in solid organ transplant recipients: incidence over 31 years at a single institution and review of the literature. Transpl. Infect. Dis. 21, e13010 (2019).

30. Kimura, H. & Cohen, J. I. Chronic active Epstein-Barr virus disease. Front. Immunol. 8, 1867 (2017).

31. Stys PK, Tsutsui S. Recent advances in understanding multiple sclerosis. F1000Res (2019) 8:F1000 Faculty Rev-2100.

32. Olsson T, Barcellos LF, Alfredsson L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat Rev Neurol (2017) 13:25–36.

33. Tarlinton RE, Martynova E, Rizvanov AA, Khaiboullina S, Verma S. Role of Viruses in the Pathogenesis of Multiple Sclerosis. Viruses (2020) 12:E643.

34. Donati D. Viral infections and multiple sclerosis. Drug Discov Today Dis Models (2020).

35. Chan VS. Epigenetics in Multiple Sclerosis. Adv Exp Med Biol (2020) 1253:309–74.

36. De Silvestri A, Capittini C, Mallucci G, Bergamaschi R, Rebuffi C, Pasi A, et al. The Involvement of HLA Class II Alleles in Multiple Sclerosis: A Systematic Review with Meta-analysis. Dis Markers (2019) 2019:1409069.

37. Dobson R, Giovannoni G. Multiple sclerosis - a review. Eur J Neurol (2019) 26:27–44.

38. Filippi M, Bar-Or A, Piehl F, Preziosa P, Solari A, Vukusic S, et al. Multiple sclerosis. Nat Rev Dis Primers (2018) 4:43.

39. Langille MM, Rutatangwa A, Francisco C. Pediatric Multiple Sclerosis: A Review. Adv Pediatr (2019) 66:209–29.

40. Moutsianas L, Jostins L, Beecham AH, Dilthey AT, Xifara DK, Ban M, et al. Class II HLA interactions modulate genetic risk for multiple sclerosis. Nat Genet (2015) 47:1107–13.

41. Lysandropoulos AP, Mavroudakis N, Pandolfo M, El Hafsi K, van Hecke W, Maertens A, et al. HLA genotype as a marker of multiple sclerosis prognosis: A pilot study. J Neurol Sci (2017) 375:348–54.

42. Goodin DS, Khankhanian P, Gourraud PA, Vince N. Highly conserved extended haplotypes of the major histocompatibility complex and their relationship to multiple sclerosis susceptibility. PloS One (2018) 13:e0190043.

43. Parnell GP, Booth DR. The Multiple Sclerosis (MS) Genetic Risk Factors Indicate both Acquired and Innate Immune Cell Subsets Contribute to MS Pathogenesis and Identify Novel Therapeutic Opportunities. Front Immunol (2017) 8:425:425.

44. Fogdell-Hahn A, Ligers A, Grønning M, Hillert J, Olerup O. Multiple sclerosis: a modifying influence of HLA class I genes in an HLA class II associated autoimmune disease. Tissue Antigens (2000) 55:140–8.

45. International Multiple Sclerosis Genetics Consortium, Wellcome Trust Case Control Consortium 2, Sawcer S, Hellenthal G, Pirinen M, Spencer CC, et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature (2011) 476:214–9.

46. Pierrot-Deseilligny C, Souberbielle JC. Vitamin D and multiple sclerosis: An update. Mult Scler Relat Disord (2017) 14:35–45.

47. Miclea A, Bagnoud M, Chan A, Hoepner R. A Brief Review of the Effects of Vitamin D on Multiple Sclerosis. Front Immunol (2020) 11:781.

48. Rodney C, Rodney S, Millis RM. Vitamin D and Demyelinating Diseases: Neuromyelitis Optica (NMO) and Multiple Sclerosis (MS). Autoimmune Dis (2020) 2020:8718736.

49. Hedström AK, Olsson T, Alfredsson L. Smoking is a major preventable risk factor for multiple sclerosis. Mult Scler (2016) 22:1021–6.

50. Arneth B. Multiple Sclerosis and Smoking. Am J Med (2020) 133:783–8.

51. Degelman ML, Herman KM. Smoking and multiple sclerosis: A systematic review and meta-analysis using the Bradford Hill criteria for causation. Mult Scler Relat Disord (2017) 17:207–16.

52. Duscha A, Gisevius B, Hirschberg S, Yissachar N, Stangl GI, Eilers E, et al. Propionic Acid Shapes the Multiple Sclerosis Disease Course by an Immunomodulatory Mechanism. Cell (2020) 180:1067–80.e16.

53. Brown J, Quattrochi B, Everett C, Hong BY, Cervantes J. Gut commensals, dysbiosis, and immune response imbalance in the pathogenesis of multiple sclerosis. Mult Scler (2020) 1352458520928301.

54. Mirza A, Forbes JD, Zhu F, Bernstein CN, Van Domselaar G, Graham M, et al. The multiple sclerosis gut microbiota: A systematic review. Mult Scler Relat Disord (2020) 37:101427.

55. Hedström AK, Olsson T, Alfredsson L. Body mass index during adolescence, rather than childhood, is critical in determining MS risk. Mult Scler (2016) 22:878–83.

56. Rasul T, Frederiksen JL. Link between overweight/obese in children and youngsters and occurrence of multiple sclerosis. J Neurol (2018) 265:2755–63.

57. Novo AM, Batista S. Multiple Sclerosis: Implications of Obesity in Neuroinflammation. Adv Neurobiol (2017) 19:191–210.

58. Hayes CE, Ntambi JM. Multiple Sclerosis: Lipids, Lymphocytes, and Vitamin D. Immunometabolism (2020) 2:e200019.

59. Bar-Or A, Pender MP, Khanna R, Steinman L, Hartung HP, Maniar T, et al. Epstein-Barr Virus in Multiple Sclerosis: Theory and Emerging Immunotherapies. Trends Mol Med (2020) 26:296–310.

60. Guan Y, Jakimovski D, Ramanathan M, Weinstock-Guttman B, Zivadinov R. The role of Epstein-Barr virus in multiple sclerosis: from molecular pathophysiology to in vivo imaging. Neural Regener Res (2019) 14:373–86.

61. Ahmed SI, Aziz K, Gul A, Samar SS, Bareeqa SB. Risk of Multiple Sclerosis in Epstein-Barr Virus Infection. Cureus (2019) 11:e5699.

62. Virtanen, J. O., Wohler, J., Fenton, K., Reich, D. S. & Jacobson, S. Oligoclonal bands in multiple sclerosis reactive against two herpesviruses and association with magnetic resonance imaging findings. Mult. Scler. 20, 27–34 (2014).

63. Franciotta, D. et al. Cerebrospinal BAFF and Epstein-Barr virus-specific oligoclonal bands in multiple sclerosis and other inflammatory demyelinating neurological diseases. J. Neuroimmunol. 230, 160–163 (2011).

64. Wang, Z. et al. Antibodies from multiple sclerosis brain identified Epstein-Barr virus nuclear antigen 1 & 2 epitopes which are recognized by oligoclonal bands. J. Neuroimmune Pharmacol. 16, 567–580 (2021).

65. van Nierop, G. P., Mautner, J., Mitterreiter, J. G., Hintzen, R. Q. & Verjans, G. M. Intrathecal CD8 T-cells of multiple sclerosis patients recognize lytic Epstein-Barr virus proteins. Mult. Scler. 22, 279–291 (2016).

66. Chabas, D. et al. The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science 294, 1731–1735 (2001).

67. Cencioni, M. T., Mattoscio, M., Magliozzi, R., Bar-Or, A. & Muraro, P. A. B cells in multiple sclerosis - from targeted depletion to immune reconstitution therapies. Nat. Rev. Neurol. 17, 399–414 (2021).

68. Lisak, R. P. et al. B cells from patients with multiple sclerosis induce cell death via apoptosis in neurons in vitro. J. Neuroimmunol. 309, 88–99 (2017).

69. Li, R. et al. Proinflammatory GM-CSF-producing B cells in multiple sclerosis and B cell depletion therapy. Sci. Transl. Med. 7, 310ra166 (2015).

70. Lucchinetti, C. et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol. 47, 707–717 (2000).

71. Lassmann, H. Multiple sclerosis pathology. Cold Spring Harb. Perspect. Med.(2018).

72. Barnett, M. H. & Prineas, J. W. Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann. Neurol. 55, 458–468 (2004).

73. Cagol, A. et al. Association of brain atrophy with disease progression independent of relapse activity in patients with relapsing multiple sclerosis. JAMA Neurol. https://doi.org/10.1001/jamaneurol.2022.1025 (2022).

74. Salou, M., Nicol, B., Garcia, A. & Laplaud, D. A. Involvement of CD8+ T cells in multiple sclerosis. Front. Immunol. 6, 604 (2015).

75. Salou, M. et al. Expanded CD8 T-cell sharing between periphery and CNS in multiple sclerosis. Ann. Clin. Transl. Neurol. 2, 609–622 (2015).

76. Sollid, L. M. Epstein-Barr virus as a driver of multiple sclerosis. Sci. Immunol. 7, eabo7799 (2022).

77. Wucherpfennig, K. W. & Strominger, J. L. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 80, 695–705 (1995).

78. Lunemann, J. D. et al. EBNA1-specific T cells from patients with multiple sclerosis cross react with myelin antigens and co-produce IFN-gamma and IL-2. J. Exp. Med. 205, 1763–1773 (2008).

79. Tengvall, K. et al. Molecular mimicry between Anoctamin 2 and Epstein-Barr virus nuclear antigen 1 associates with multiple sclerosis risk. Proc. Natl Acad. Sci. USA 116, 16955–16960 (2019).

80. van Sechel, A. C. et al. EBV-induced expression and HLA-DR-restricted presentation by human B cells of alpha B-crystallin, a candidate autoantigen in multiple sclerosis. J. Immunol. 162, 129–135 (1999).

81. Jelcic, I. et al. Memory B cells activate brain-homing, autoreactive CD4(+) T cells in multiple sclerosis. Cell 175, 85–100 e123 (2018).

82. Nociti, V. et al. Epstein-Barr virus antibodies in serum and cerebrospinal fluid from multiple sclerosis, chronic inflammatory demyelinating polyradiculoneuropathy and amyotrophic lateral sclerosis. J. Neuroimmunol. 225, 149–152 (2010).

83. Ascherio, A., Munger, K. L. & Lunemann, J. D. The initiation and prevention of multiple sclerosis. Nat. Rev. Neurol. 8, 602–612 (2012).

84. Hedström, A. K. et al. High levels of Epstein-Barr virus nuclear antigen-1-specific antibodies and infectious mononucleosis act both independently and synergistically to increase multiple sclerosis risk. Front. Neurol. 10, 1368 (2019).

85. van Noort, J. M., Bajramovic, J. J., Plomp, A. C. & van Stipdonk, M. J. Mistaken self, a novel model that links microbial infections with myelin-directed autoimmunity in multiple sclerosis. J. Neuroimmunol. 105, 46–57 (2000).

86. Hecker, M. et al. High-density peptide microarray analysis of IgG autoantibody reactivities in serum and cerebrospinal fluid of multiple sclerosis patients. Mol. Cell Proteom. 15, 1360–1380 (2016).

87. Melchers, F. & Rolink, A. R. B cell tolerance–how to make it and how to break it. Curr. Top. Microbiol. Immunol. 305, 1–23 (2006).

88. Sommermann, T. et al. Functional interplay of Epstein-Barr virus oncoproteins in a mouse model of B cell lymphomagenesis. Proc. Natl Acad. Sci. USA 117, 14421–14432 (2020).

89. Laurence, M. & Benito-Leon, J. Epstein-Barr virus and multiple sclerosis: updating Pender’s hypothesis. Mult. Scler. Relat. Disord. 16, 8–14 (2017).

90. Veroni, C., Serafini, B., Rosicarelli, B., Fagnani, C. & Aloisi, F. Transcriptional profile and Epstein-Barr virus infection status of laser-cut immune infiltrates from the brain of patients with progressive multiple sclerosis. J. Neuroinflamm. 15, 18 (2018).

91. Moreno, M. A. et al. Molecular signature of Epstein-Barr virus infection in MS brain lesions. Neurol. Neuroimmunol. Neuroinflamm 5, e466 (2018).

92. Serafini, B., Rosicarelli, B., Veroni, C., Mazzola, G. A. & Aloisi, F. Epstein-Barr virus-specific CD8 T cells selectively infiltrate the brain in multiple sclerosis and interact locally with virus-infected cells: clue for a virus-driven immunopathological mechanism. J. Virol.(2019).

93. Recher, M. et al. Extralymphatic virus sanctuaries as a consequence of potent T-cell activation. Nat. Med. 13, 1316–1323 (2007).

94. Hochberg, D. et al. Acute infection with Epstein-Barr virus targets and overwhelms the peripheral memory B-cell compartment with resting, latently infected cells. J. Virol. 78, 5194–5204 (2004).

95. Veroni, C. et al. Immune and Epstein-Barr virus gene expression in cerebrospinal fluid and peripheral blood mononuclear cells from patients with relapsing-remitting multiple sclerosis. J. Neuroinflamm. 12, 132 (2015).

96. Kiriyama, T., Kataoka, H., Kasai, T., Nonomura, A. & Ueno, S. Negative association of Epstein-Barr virus or herpes simplex virus-1 with tumefactive central nervous system inflammatory demyelinating disease. J. Neurovirol. 16, 466–471 (2010).

97. Sargsyan, S. A. et al. Absence of Epstein-Barr virus in the brain and CSF of patients with multiple sclerosis. Neurology 74, 1127–1135 (2010).

98. Willis, S. N. et al. Epstein-Barr virus infection is not a characteristic feature of multiple sclerosis brain. Brain 132, 3318–3328 (2009).

99. Peferoen, L. A. et al. Epstein Barr virus is not a characteristic feature in the central nervous system in established multiple sclerosis. Brain 133, e137 (2010).

100. Torkildsen, O. et al. Upregulation of immunoglobulin-related genes in cortical sections from multiple sclerosis patients. Brain Pathol. 20, 720–729 (2010).

101. Burnham, J. A., Wright, R. R., Dreisbach, J. & Murray, R. S. The effect of high-dose steroids on MRI gadolinium enhancement in acute demyelinating lesions. Neurology 41, 1349–1354 (1991).

102. Baker, D., Marta, M., Pryce, G., Giovannoni, G. & Schmierer, K. Memory B cells are major targets for effective immunotherapy in relapsing multiple sclerosis. EBioMedicine 16, 41–50 (2017).

103. Ceronie, B. et al. Cladribine treatment of multiple sclerosis is associated with depletion of memory B cells. J. Neurol. 265, 1199–1209 (2018).

104. Hauser, S. L. et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N. Engl. J. Med. 358, 676–688 (2008).

105. Kappos, L. et al. Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet 378, 1779–1787 (2011).

106. Segal, B. M. et al. Repeated subcutaneous injections of IL12/23 p40 neutralising antibody, ustekinumab, in patients with relapsing-remitting multiple sclerosis: a phase II, double-blind, placebo-controlled, randomised, dose-ranging study. Lancet Neurol. 7, 796–804 (2008).

107. Kappos, L. et al. Atacicept in multiple sclerosis (ATAMS): a randomised, placebo-controlled, double-blind, phase 2 trial. Lancet Neurol. 13, 353–363 (2014).

108. Bilger, A. et al. Leflunomide/teriflunomide inhibit Epstein-Barr virus (EBV)- induced lymphoproliferative disease and lytic viral replication. Oncotarget 8, 44266–44280 (2017).

Downloads

Published

2024-12-20

How to Cite

ویروس اپشتین بار (EBV)  و مالتیپل اسکلروزیس (MS) : علت ، علائم ، تشخیص و درمان. (2024). Development Engineering Conferences Center Articles Database, 1(4). https://pubs.bcnf.ir/index.php/Articles/article/view/298

Similar Articles

1-10 of 121

You may also start an advanced similarity search for this article.