An overview of the role of new technologies in wildlife disease monitoring and tracking
Keywords:
Wildlife, Monitoring, ReviewAbstract
The advent of new technologies has revolutionized the field of wildlife disease monitoring and tracking, providing unprecedented opportunities to enhance the understanding, prevention, and management of diseases affecting wildlife populations. This overview examines the significant impact of advanced tools such as satellite tracking, GPS collars, remote sensing, drones, and sophisticated diagnostic techniques in detecting and analyzing disease patterns. Additionally, it highlights the role of data analytics and artificial intelligence in processing vast datasets to predict outbreaks and model disease transmission dynamics. The integration of these innovative technologies has enabled more accurate, real-time monitoring, facilitating early intervention and informed decision-making. By leveraging these advancements, researchers and conservationists can better protect wildlife health, support biodiversity, and mitigate the risks of zoonotic diseases that threaten both animal and human populations. This comprehensive review underscores the transformative potential of new technologies in promoting effective wildlife disease surveillance and management strategies.
Downloads
References
[1] AbdulJabbar, K., Castillo, S. P., Hughes, K., Davidson, H., Boddy, A. M., Abegglen, L. M., . . . Graham, T. A. (2023). Bridging clinic and wildlife care with AI-powered pan-species computational pathology. Nature communications, 14(1), 2408.
[2] Adegoke, B. O., Odugbose, T., & Adeyemi, C. (2024). Data analytics for predicting disease outbreaks: A review of models and tools. International journal of life science research updates [online], 2(2), 1-9.
[3] Altizer, S., Bartel, R., & Han, B. A. (2011). Animal migration and infectious disease risk. Science, 331(6015), 296-302.
[4] Ayoola, V. B., Idoko, I. P., Eromonsei, S. O., & Afolabi, O. (2024). The role of big data and AI in enhancing biodiversity conservation and resource management in the USA.
[5] Baratchi, M., Meratnia, N., Havinga, P. J., Skidmore, A. K., & Toxopeus, B. A. (2013). Sensing solutions for collecting spatio-temporal data for wildlife monitoring applications: a review. Sensors, 13(5), 6054-6088.
[6] Beaver, J. T., Baldwin, R. W., Messinger, M., Newbolt, C. H., Ditchkoff, S. S., & Silman, M. R. (2020). Evaluating the use of drones equipped with thermal sensors as an effective method for estimating wildlife. Wildlife Society Bulletin, 44(2), 434-443.
[7] Benton, C. H., Delahay, R. J., Trewby, H., & Hodgson, D. J. (2015). What has molecular epidemiology ever done for wildlife disease research? Past contributions and future directions. European Journal of Wildlife Research, 61, 1-16.
[8] Bernardo-Cravo, A. P., Schmeller, D. S., Chatzinotas, A., Vredenburg, V. T., & Loyau, A. (2020). Environmental factors and host microbiomes shape host–pathogen dynamics. Trends in parasitology, 36(7), 616-633.
[9] Bohmann, K., Evans, A., Gilbert, M. T. P., Carvalho, G. R., Creer, S., Knapp, M., . . . De Bruyn, M. (2014). Environmental DNA for wildlife biology and biodiversity monitoring. Trends in ecology & evolution, 29(6), 358-367.
[10] Brum-Bastos, V., Long, J., Church, K., Robson, G., de Paula, R., & Demšar, U. (2020). Multi-source data fusion of optical satellite imagery to characterize habitat selection from wildlife tracking data. Ecological Informatics, 60, 101149.
[11] Burke, C., Rashman, M., Wich, S., Symons, A., Theron, C., & Longmore, S. (2019). Optimizing observing strategies for monitoring animals using drone-mounted thermal infrared cameras. International Journal of Remote Sensing, 40(2), 439-467.
[12] Clee, P. R. S. (2017). Distributions, Drivers, and Risks of Wildlife Infectious Diseases across Africa: using geospatial analyses to elucidate disease occurrence in biodiversity hotspots: Drexel University.
[13] Congdon, J. V., Hosseini, M., Gading, E. F., Masousi, M., Franke, M., & MacDonald, S. E. (2022). The future of artificial intelligence in monitoring animal identification, health, and behaviour. Animals, 12(13), 1711.
[14] Craft, M. E. (2015). Infectious disease transmission and contact networks in wildlife and livestock. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1669), 20140107.
[15] Cunningham, A. A., Daszak, P., & Wood, J. L. (2017). One Health, emerging infectious diseases and wildlife: two decades of progress? Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1725), 20160167.
[16] Das, B., Ellis, M., & Sahoo, M. (2024). Veterinary diagnostics: growth, trends, and impact. In Evolving Landscape of Molecular Diagnostics (pp. 227-242): Elsevier.
[17] De la Llata Quiroga, E. (2023). The use of unmanned aerial vehicles for wildlife research. Biocyt: Biología, Ciencia y Tecnología(16), 1170-1187.
[18] Duporge, I. (2021). Advancing remote sensing methods to monitor wildlife. University of Oxford,
[19] Ezanno, P., Picault, S., Beaunée, G., Bailly, X., Muñoz, F., Duboz, R., . . . Guégan, J.-F. (2021). Research perspectives on animal health in the era of artificial intelligence. Veterinary research, 52, 1-15.
[20] Gonzalez, L. F., Montes, G. A., Puig, E., Johnson, S., Mengersen, K., & Gaston, K. J. (2016). Unmanned aerial vehicles (UAVs) and artificial intelligence revolutionizing wildlife monitoring and conservation. Sensors, 16(1), 97.
[21] Guo, W., Lv, C., Guo, M., Zhao, Q., Yin, X., & Zhang, L. (2023). Innovative applications of artificial intelligence in zoonotic disease management. Science in One Health, 100045.
[22] Hollings, T., Burgman, M., van Andel, M., Gilbert, M., Robinson, T., & Robinson, A. (2018). How do you find the green sheep? A critical review of the use of remotely sensed imagery to detect and count animals. Methods in Ecology and Evolution, 9(4), 881-892.
[23] Hughey, L. F., Hein, A. M., Strandburg-Peshkin, A., & Jensen, F. H. (2018). Challenges and solutions for studying collective animal behaviour in the wild. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1746), 20170005.
[24] Hvala, A., Rogers, R. M., Alazab, M., & Campbell, H. A. (2023). Supplementing aerial drone surveys with biotelemetry data validates wildlife detection probabilities. Frontiers in Conservation Science, 4, 1203736.
[25] Joseph, M. B., Mihaljevic, J. R., Arellano, A. L., Kueneman, J. G., Preston, D. L., Cross, P. C., & Johnson, P. T. (2013). Taming wildlife disease: bridging the gap between science and management. Journal of Applied Ecology, 50(3), 702-712.
[26] Kozakiewicz, C. P., Burridge, C. P., Funk, W. C., VandeWoude, S., Craft, M. E., Crooks, K. R., . . . Carver, S. (2018). Pathogens in space: Advancing understanding of pathogen dynamics and disease ecology through landscape genetics. Evolutionary Applications, 11(10), 1763-1778.
[27] Lee, N. Y. (2018). A review on microscale polymerase chain reaction based methods in molecular diagnosis, and future prospects for the fabrication of fully integrated portable biomedical devices. Microchimica Acta, 185, 1-22.
[28] Li, J. (2023). The application of non-and minimally-invasive biological and environmental samples in wildlife surveillance and genetic research.
[29] MacAulay, S., Ellison, A. R., Kille, P., & Cable, J. (2022). Moving towards improved surveillance and earlier diagnosis of aquatic pathogens: From traditional methods to emerging technologies. Reviews in Aquaculture, 14(4), 1813-1829.
[30] Mangewa, L. J., Ndakidemi, P. A., & Munishi, L. K. (2019). Integrating UAV technology in an ecological monitoring system for community wildlife management areas in Tanzania. Sustainability, 11(21), 6116.
[31] Manville, A. M., Levitt, B. B., & Lai, H. C. (2024). Health and environmental effects to wildlife from radio telemetry and tracking devices—state of the science and best management practices. Frontiers in Veterinary Science, 11, 1283709.
[32] Nathan, R., Monk, C. T., Arlinghaus, R., Adam, T., Alós, J., Assaf, M., . . . Bijleveld, A. I. (2022). Big-data approaches lead to an increased understanding of the ecology of animal movement. Science, 375(6582), eabg1780.
[33] Neethirajan, S. (2020). The role of sensors, big data and machine learning in modern animal farming. Sensing and Bio-Sensing Research, 29, 100367.
[34] Osofsky, S. A. (2005). Conservation and Development Interventions at the Wildlife/livestock Interface: Implications for Wildlife, Livestock and Human Health: Proceedings of the Southern and East African Experts Panel on Designing Successful Conservation and Development Interventions at the Wildlife/Livestock Interface: Implications for Wildlife, Livestock and Human Health, AHEAD (Animal Health for the Environment And Development) Forum, IUCN Vth World Parks Congress, Durban, South Africa, 14th and 15th September 2003: IUCN.
[35] Parsons, M. B., Gillespie, T. R., Lonsdorf, E. V., Travis, D., Lipende, I., Gilagiza, B., . . . Vazquez-Prokopec, G. M. (2014). Global positioning system data-loggers: a tool to quantify fine-scale movement of domestic animals to evaluate potential for zoonotic transmission to an endangered wildlife population. PLoS One, 9(11), e110984.
[36] Rietz, J., van Beeck Calkoen, S. T., Ferry, N., Schlüter, J., Wehner, H., Schindlatz, K.-H., . . . Müller, J. (2023). Drone‐Based Thermal Imaging in the Detection of Wildlife Carcasses and Disease Management. Transboundary and emerging diseases, 2023(1), 5517000.
[37] Ronda, C., & Wang, H. H. (2022). Engineering temporal dynamics in microbial communities. Current opinion in microbiology, 65, 47-55.
[38] Scarpa, F., & Casu, M. (2024). Genomics and Bioinformatics in One Health: Transdisciplinary Approaches for Health Promotion and Disease Prevention. International Journal of Environmental Research and Public Health, 21(10), 1337.
[39] Suminda, G. G. D., Bhandari, S., Won, Y., Goutam, U., Pulicherla, K. K., Son, Y.-O., & Ghosh, M. (2022). High-throughput sequencing technologies in the detection of livestock pathogens, diagnosis, and zoonotic surveillance. Computational and structural biotechnology journal, 20, 5378-5392.
[40] Trinh, P., Zaneveld, J. R., Safranek, S., & Rabinowitz, P. M. (2018). One health relationships between human, animal, and environmental microbiomes: a mini-review. Frontiers in public health, 6, 235.
[41] Wang, T., Wang, Z., Bai, L., Zhang, X., Feng, J., Qian, C., . . . Wang, R. (2023). Next-generation CRISPR-based diagnostic tools for human diseases. TrAC Trends in Analytical Chemistry, 168, 117328.
[42] Webster, J. P., Gower, C. M., Knowles, S. C., Molyneux, D. H., & Fenton, A. (2016). One health–an ecological and evolutionary framework for tackling Neglected Zoonotic Diseases. Evolutionary Applications, 9(2), 313-333.
[43] Whitney, K. (2022). History of wildlife tracking technologies. In Oxford Research Encyclopedia of Environmental Science.
[44] Zhang, L., Guo, W., & Lv, C. (2024). Modern technologies and solutions to enhance surveillance and response systems for emerging zoonotic diseases. Science in One Health, 3, 100061.
[45] Zhang, Y., Peng, Q., Zhang, R., Li, C., Xu, Q., Xia, L., . . . Pan, H. (2023). Advances in CRISPR/Cas‐Based Strategies on Zoonosis. Transboundary and emerging diseases, 2023(1), 9098445.
[46] Zuraw, A., & Aeffner, F. (2022). Whole-slide imaging, tissue image analysis, and artificial intelligence in veterinary pathology: An updated introduction and review. Veterinary pathology, 59(1), 6-25.