Sea Wave Energy Overview of Current Technologiesand views
Keywords:
Sea wave, electric energy, renewable energy, rootAbstract
The proposal of new technologies capable of generating electrical energy from renewable energies has directed research resources on seas and oceans. Research in this field finds the future of renewable energy very promising, especially in areas where there are specific climatic and morphological conditions that have the characteristics to exploit large amounts of energy from the sea. In general, this type of energy includes six energy sources: waves, tidal range, tidal current, ocean current, ocean thermal energy conversion and salinity gradient. The purpose of this review is to list several wave energy, converter power plants and analyze their years of operation. In this research, we try to know how many wave energy converter power plants work on average and whether it is really necessary to use such technologies.
References
[1] Saquib Maqsood, M.; Prasad Padhi, B. Ocean Energy: An Insight. In Proceedings of the Nationalm Seminar on Sustainable Future, through Leadership & Technology, Bhubaneswar, India, 3–4 March 2017; pp. 59–64.
[2] World Energy Council. World Energy Resources; World Energy Council: London, UK, 2016; Volume 1.
[3] Cascajo, R.; García, E.; Quiles, E.; Correcher, A.; Morant, F. Integration of marine wave energy converters into seaports: A case study in the port of Valencia. Energies 2019, 12, 787.
[4] Barstow, S.; Mørk, G.; Mollison, D.; Cruz, J. The Wave Energy Resource. In Ocean Wave Energy; Springer: Berlin/Heidelberg, Germany, 2008; pp. 93–132. ISBN 978-3-540-74894-6/978-3-540-74895-3.
[5] Neill, S.P.; Angeloudis, A.; Robins, P.E.; Walkington, I.; Ward, S.L.; Masters, I.; Lewis, M.J.; Piano, M.; Avdis, A.; Piggott, M.D.; et al. Tidal range energy resource and optimization—Past perspectives and future challenges. Renew. Energy 2018, 127, 763–778.
[6] Yang, X.; Haas, K.A.; Fritz, H.M. Evaluating the potential for energy extraction from turbines in the gulf stream system.Renew. Energy 2014, 72, 12–21.
[7] Guo, J.; Zhang, Z.; Xia, C.; Guo, B.; Yuan, Y. Topographic–baroclinic instability and formation of Kuroshio current loop.Dyn. Atmos. Ocean. 2018, 81, 15–29.
[8] Krug, M.; Schilperoort, D.; Collard, F.; Hansen, M.W.; Rouault, M. Signature of the Agulhas Current in high resolution satellite derived wind fields. Remote Sens. Environ. 2018, 217, 340–351.
[9] Tinaikar, A. Ocean thermal energy conversion. Int. J. Energy Power Eng. 2013, 2, 143–146.
[10] World Energy Council. World Energy Resources: Marine Energy 2016; World Energy Council: London, UK, 2016; p. 79.
[11] Asian Development Bank. Wave Energy Conversion and Ocean Thermal Energy Conversion Potential in Developing Member Countries;Asian Development Bank: Mandaluyong City, Philippines, 2014; ISBN 978-92-9254-530-7.
[12] Helfer, F.; Lemckert, C.; Anissimov, Y.G. Osmotic power with Pressure Retarded Osmosis: Theory, performance and trends—A review. J. Memb. Sci. 2014, 453, 337–358.
[13] Curto, D.; Franzitta, V.; Guercio, A. A review of the water desalination technologies. Appl. Sci. 2021, 11, 670.
[14] Laing, A.; Gemmill, W.; Magnusson, A.; Burroughs, L.; Reistad, M.; Khandekar, M.; Holthuijsen, L.; Ewing, J.; Carter, D. Guide to Wave Analysis and Forecasting; World Meteorological Organization: Geneva, Switzerland, 1998; Volume 1998, ISBN 9263127026.
[15] Aderinto, T.; Li, H. Ocean Wave energy converters: Status and challenges. Energies 2018, 11, 1250.
[16] Falcão, A.F.d.O. Wave energy utilization: A review of the technologies. Renew. Sustain. Energy Rev. 2010, 14, 899–918.
[17] Bhattacharyya, R.; McCormick, M.E. Wave Power Activities in Northern Europe. In Wave Energy Conversion; Elsevier Science:Amsterdam, The Netherlands, 2003; pp. 95–123.
[18] Malmo, O.; Reitan, A. Development of the Kvaerner Multiresonant OWC. In Hydrodynamics of Ocean Wave-Energy Utilization;Springer: Berlin/Heidelberg, Germany, 1986; pp. 57–67. ISBN 978-3-642-82668-9.
[19] Maurya, A.K.; Singh, S.P. Assessment of Ocean Wave Energy Converters for Indian Coastal Region. IETE Tech. Rev. 2020, 37,476–488.
[20] Ravindran, M.; Koola, P.M. Energy from sea waves—The Indian wave energy programme. Curr. Sci. 1991, 60, 676–680.
[21] Khan, J.; Bhuyan, G.S. Ocean Energy: Global Technology Development Status; Report prepared by Powertech Labs for the IEA-OES; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2009.
[22] Agence Française De Développement; Indian Renewable Energy Development Agency Limited. Study on Tidal & Waves Energy in India: Survey on the Potential & Proposition of a Roadmap; AFD: Paris, France; IREDA: New Delhi, India, 2014.
[23] Thiruvenkatasamy, K.; Neelamani, S. On the efficiency of wave energy caissons in array. Appl. Ocean Res. 1997, 19, 61–72.
[24] Falcão, A.F.O.; Henriques, J.C.C. Oscillating-water-column wave energy converters and air turbines: A review. Renew. Energy2016, 85, 1391–1424.
[25] Whittaker, T.J.T.; Beattie, W.; Folley, M.; Boake, C.; Wright, A.; Osterried, M. The Limpet Wave Power Project—The First Years of Operation. Renew. Energy 2004, 1–8.
[26] Mouffe, L.; De Rouck, J.; Verbrugghe, T.; Ranjitkar, G.; Obermann, E.; Wei, P.; Nielsen, K.; Magagna, D.; Soede, M.; De Roeck,Y.-H.; et al. Annual Report: An Overview of Ocean Energy Activities in 2017; IEA: Paris, France, 2017.
[27] Korea Institute of Ocean Science and Technology KIOST. Yongsoo OWC. Available online: https://openei.org/wiki/PRIMRE/D atabases/Technology_Database/Devices/Yongsoo_OWC (accessed on 5 October 2021).
[28] Garanovic, A. Wave Swell Energy Deploys UniWave200 off Tasmania. Available online: https://www.offshore-energy.biz/wave -swell-energy-deploys-uniwave200-off-tasmania/ (accessed on 5 October 2021).
[29] Wave Swell Energy Ltd. WAVE SWELL. Available online: https://www.waveswell.com/ (accessed on 5 October 2021).
[30] Masuda, Y.; Yamazaki, T.; Outa, Y.; McCormick, M. Study of Backward Bent Duct Buoy. In Proceedings of the OCEANS ’87,Washington, DC, USA, 28 September–1 October 1987; pp. 384–389.
[31] DTI. Near Shore Floating Oscillating Wave Column: Prototype Development and Evaluation; DTI: Makati, Philippines, 2004.
[32] Parkin, P.; Payne, G.S.; Taylor, J.R.M. Numerical simulation and tank tests of the free-floating Sloped IPS Buoy. In Proceedings of the 5th European Wave Energy Conference, Cork, Ireland, 17–20 September 2003.
[33] Falcão, A.F.O.; Henriques, J.C.C.; Cândido, J.J. Dynamics and optimization of the OWC spar buoy wave energy converter. Renew.Energy 2012, 48, 369–381.
[34] JAMSTEC. JAMSTEC Gallery. Mighty Whale. Available online: http://www.jamstec.go.jp/gallery/j/research/system/images/s ystem_002_l.jpg (accessed on 6 August 2019).
[35] OES-Environmental. Mighty Whale. Available online: https://tethys.pnnl.gov/project-sites/mighty-whale (accessed on 6October 2021).
[36] Washio, Y.; Osawa, H.; Ogata, T. The open sea tests of the offshore floating type wave power device “Mighty Whale”—characteristics of wave energy absorption and power generation. In Proceedings of the MTS/IEEE Oceans 2001—An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295), Honolulu, HI, USA, 5–8 November 2001; Marine Technology Society: Washington, DC, USA, 2002; Volume 1, pp. 579–585.
[37] Vicinanza, D.; Margheritini, L.; Kofoed, J.P.; Buccino, M. The SSG Wave Energy Converter: Performance, Status and Recent Developments. Energies 2012, 5, 193–226. [CrossRef]
[38] Yemm, R.; Pizer, D.; Retzler, C.; Henderson, R. Pelamis: Experience from concept to connection. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2012, 370, 365–380. [CrossRef]
[39] Poullikkas, A. Technology Prospects of Wave Power Systems. Electron. J. Energy Environ. 2014, 2, 47–69.
[40] Leijon, M.; Boström, C.; Danielsson, O.; Gustafsson, S.; Haikonen, K.; Langhamer, O.; Strömstedt, E.; Stålberg, M.; Sundberg, J.; Svensson, O.; et al. Wave energy from the North Sea: Experiences from the lysekil research site. Surv. Geophys. 2008, 29, 221–240.
[41] Tarrant, K.; Meskell, C. Investigation on parametrically excited motions of point absorbers in regular waves. Ocean Eng. 2016, 111,67–81.
[42] Patel, S. Ocean Power Technologies Deploys Commercial PowerBuoy with Energy Storage. Available online: https://www.powermag.com/ocean-power-technologies-deploys-commercial-powerbuoy-energy-storage/ (accessed on 30 August 2021).
[43] Globe News Wire. Ocean Power Technologies Successfully Deploys APB350 PowerBuoy Off the Coast of Atlantic City, New Jersey; Ocean Power Technologies: Princeton, NJ, USA, 2015.
[44] Frangoul, A. In Scotland, Wave Energy Device Reaches Critical Milestone, Gears up for Testing. CNBC. Available online: https://www.cnbc.com/2021/06/25/wave-energy-device-reaches-critical-milestone-gears-up-for-testing-.html (accessed on 25June 2021).
[45] Alfarsi, H. CETO System: Clean Electricity and Water Desalination Using Ocean Waves. Profolus. Available online: https://www.profolus.com/topics/ceto-system-clean-electricity-water-desalination-oceanic-waves/ (accessed on 28 May 2021).
[46] Hastie, H. Resurfacing: Collapsed WA wave energy company wants $5m for a rebirth. The Sydney Morning Herald. Availableonline: https://www.smh.com.au/topic/cce-cf (accessed on 17 April 2019).
[47] ARENA. Carnegie CETO 6 Technology. Available online: https://arena.gov.au/projects/carnegie-ceto-6-technology/ (accessed on 6 October 2021).