بررسی تاثیر اکسید فلزات در هیدروژناسیون CO2 به متانول
DOI:
https://doi.org/10.5281/zenodo.17055238Keywords:
CO2, متانول, کاتالیست, اکسید فلزیAbstract
در این مقاله به بررسی تأثیر خواص و ترکیبات مختلف اکسیدهای فلزی در بهبود عملکرد کاتالیستهای مورد استفاده برای تبدیل دیاکسید کربن به متانول پرداخته شده است. از آنجایی که CO2 ترکیبی ترمودینامیکی پایدار و واکنشناپذیر است، بهکارگیری کاتالیستهای مؤثر برای فعالسازی آن ضروری است. مطالعات تجربی و نظری نشان دادهاند که استفاده از اکسیدهای فلزی مانند ZnO، CeO2، ZrO2 و TiO2 بهعنوان ارتقاءدهنده یا ساپورت در کنار کاتالیستهای مسپایه (مانند Cu/ZnO/Al2O3) باعث افزایش پراکندگی مس، افزایش جایگاههای فعال، بهبود جذب CO2 و در نهایت ارتقاء بازده و انتخابپذیری متانول میشود. همچنین، تأثیر ساختار نانو و ترکیب دقیق کاتالیستها در افزایش عملکرد آنها مورد تأکید قرار گرفته است.
Downloads
References
[1] X. Jiang, X. Nie, X. Guo, C. Song, and J. G. Chen, "Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis," Chemical reviews, vol. 120, no. 15, pp. 7984-8034, 2020.
[2] A. Zachopoulos and E. Heracleous, "Overcoming the equilibrium barriers of CO2 hydrogenation to methanol via water sorption: A thermodynamic analysis," Journal of CO2 Utilization, vol. 21, pp. 360-367, 2017.
[3] M. Ronda-Lloret, Y. Wang, P. Oulego, G. Rothenberg, X. Tu, and N. R. Shiju, "CO2 hydrogenation at atmospheric pressure and low temperature using plasma-enhanced catalysis over supported cobalt oxide catalysts," ACS sustainable chemistry & engineering, vol. 8, no. 47, pp. 17397-17407, 2020.
[4] F. Schorn et al., "Methanol as a renewable energy carrier: An assessment of production and transportation costs for selected global locations," Advances in Applied Energy, vol. 3, p. 100050, 2021.
[5] S. Kanuri, S. Roy, C. Chakraborty, S. P. Datta, S. A. Singh, and S. Dinda, "An insight of CO2 hydrogenation to methanol synthesis: Thermodynamics, catalysts, operating parameters, and reaction mechanism," International Journal of Energy Research, vol. 46, no. 5, pp. 5503-5522, 2022.
[6] K. Stangeland, H. Li, and Z. Yu, "Thermodynamic analysis of chemical and phase equilibria in CO2 hydrogenation to methanol, dimethyl ether, and higher alcohols," Industrial & Engineering Chemistry Research, vol. 57, no. 11, pp. 4081-4094, 2018.
[7] B. Trifan, J. Lasobras, J. Soler, J. Herguido, and M. Menéndez, "Modifications in the composition of CuO/ZnO/Al2O3 catalyst for the synthesis of methanol by CO2 hydrogenation," Catalysts, vol. 11, no. 7, p. 774, 2021.
[8] M. B. Fichtl et al., "Kinetics of deactivation on Cu/ZnO/Al2O3 methanol synthesis catalysts," Applied Catalysis A: General, vol. 502, pp. 262-270, 2015.
[9] G. C. Chinchen, P. J. Denny, D. G. Parker, M. S. Spencer, and D. A. Whan, "Mechanism of methanol synthesis from CO2/CO/H2 mixtures over copper/zinc oxide/alumina catalysts: use of14C-labelled reactants," Applied Catalysis, vol. 30, no. 2, pp. 333-338, 1987.
[10] P. B. Rasmussen et al., "Methanol synthesis on Cu (100) from a binary gas mixture of CO 2 and H 2," Catalysis Letters, vol. 26, pp. 373-381, 1994.
[11] T. M. Yurieva, L. M. Plyasova, T. A. Kriger, V. I. Zaikovskii, O. V. Makarova, and T. P. Minyukova, "State of copper-containing catalyst for methanol synthesis in the reaction medium," Reaction Kinetics and Catalysis Letters, vol. 51, pp. 495-500, 1993.
[12] V. Ponec, "Cu and Pd, two catalysts for CH3OH synthesis: the similarities and the differences," Surface science, vol. 272, no. 1-3, pp. 111-117, 1992.
[13] J. C. Frost, "Junction effect interactions in methanol synthesis catalysts," Nature, vol. 334, no. 6183, pp. 577-580, 1988.
[14] F. Liao et al., "Morphology‐dependent interactions of ZnO with Cu nanoparticles at the materials’ interface in selective hydrogenation of CO2 to CH3OH," Angewandte Chemie International Edition, vol. 50, no. 9, pp. 2162-2165, 2011.
[15] J. D. Grunwaldt, A. M. Molenbroek, N. Y. Topsøe, H. Topsøe, and B. S. Clausen, "In situ investigations of structural changes in Cu/ZnO catalysts," Journal of Catalysis, vol. 194, no. 2, pp. 452-460, 2000.
[16] N.-Y. Topsøe and H. Topsøe, "On the nature of surface structural changes in Cu/ZnO methanol synthesis catalysts," Topics in Catalysis, vol. 8, pp. 267-270, 1999.
[17] M. Behrens et al., "The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts," Science, vol. 336, no. 6083, pp. 893-897, 2012.
[18] S. Kuld et al., "Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis," Science, vol. 352, no. 6288, pp. 969-974, 2016.
[19] M. Behrens et al., "The effect of Al-doping on ZnO nanoparticles applied as catalyst support," Physical Chemistry Chemical Physics, vol. 15, no. 5, pp. 1374-1381, 2013.
[20] N. J. Brown, J. Weiner, K. Hellgardt, M. S. P. Shaffer, and C. K. Williams, "Phosphinate stabilised ZnO and Cu colloidal nanocatalysts for CO 2 hydrogenation to methanol," Chemical Communications, vol. 49, no. 94, pp. 11074-11076, 2013.
[21] H. Ban, C. Li, K. Asami, and K. Fujimoto, "Influence of rare-earth elements (La, Ce, Nd and Pr) on the performance of Cu/Zn/Zr catalyst for CH3OH synthesis from CO2," Catalysis Communications, vol. 54, pp. 50-54, 2014.
[22] J. Xiao, D. Mao, X. Guo, and J. Yu, "Effect of TiO2, ZrO2, and TiO2–ZrO2 on the performance of CuO–ZnO catalyst for CO2 hydrogenation to methanol," Applied Surface Science, vol. 338, pp. 146-153, 2015.
[23] G. Wang, D. Mao, X. Guo, and J. Yu, "Methanol synthesis from CO2 hydrogenation over CuO-ZnO-ZrO2-MxOy catalysts (M= Cr, Mo and W)," International Journal of Hydrogen Energy, vol. 44, no. 8, pp. 4197-4207, 2019.
[24] K. Samson et al., "Influence of ZrO2 structure and copper electronic state on activity of Cu/ZrO2 catalysts in methanol synthesis from CO2," ACS catalysis, vol. 4, no. 10, pp. 3730-3741, 2014.
[25] M. Mureddu, F. Ferrara, and A. Pettinau, "Highly efficient CuO/ZnO/ZrO2@ SBA-15 nanocatalysts for methanol synthesis from the catalytic hydrogenation of CO2," Applied Catalysis B: Environmental, vol. 258, p. 117941, 2019.
[26] G. Wang, L. Chen, Y. Sun, J. Wu, M. Fu, and D. Ye, "Carbon dioxide hydrogenation to methanol over Cu/ZrO 2/CNTs: effect of carbon surface chemistry," RSC advances, vol. 5, no. 56, pp. 45320-45330, 2015.
[27] X. Fang et al., "Improved methanol yield and selectivity from CO2 hydrogenation using a novel Cu-ZnO-ZrO2 catalyst supported on Mg-Al layered double hydroxide (LDH)," Journal of CO2 Utilization, vol. 29, pp. 57-64, 2019.
[28] C. Huang, D. Mao, X. Guo, and J. Yu, "Microwave‐Assisted Hydrothermal Synthesis of CuO–ZnO–ZrO2 as Catalyst for Direct Synthesis of Methanol by Carbon Dioxide Hydrogenation," Energy Technology, vol. 5, no. 11, pp. 2100-2107, 2017.
[29] S. Li, Y. Wang, B. Yang, and L. Guo, "A highly active and selective mesostructured Cu/AlCeO catalyst for CO2 hydrogenation to methanol," Applied Catalysis A: General, vol. 571, pp. 51-60, 2019.
[30] P. Sripada, J. Kimpton, A. Barlow, T. Williams, S. Kandasamy, and S. Bhattacharya, "Investigating the dynamic structural changes on Cu/CeO2 catalysts observed during CO2 hydrogenation," Journal of catalysis, vol. 381, pp. 415-426, 2020.
[31] S. Li, L. Guo, and T. Ishihara, "Hydrogenation of CO2 to methanol over Cu/AlCeO catalyst," Catalysis today, vol. 339, pp. 352-361, 2020.
[32] Q. Tan, Z. Shi, and D. Wu, "CO2 hydrogenation to methanol over a highly active Cu–Ni/CeO2–nanotube catalyst," Industrial & Engineering Chemistry Research, vol. 57, no. 31, pp. 10148-10158, 2018.
[33] Z. Shi, Q. Tan, and D. Wu, "Enhanced CO2 hydrogenation to methanol over TiO2 nanotubes-supported CuO-ZnO-CeO2 catalyst," Applied Catalysis A: General, vol. 581, pp. 58-66, 2019.
[34] F. Lin, X. Jiang, N. Boreriboon, Z. Wang, C. Song, and K. Cen, "Effects of supports on bimetallic Pd-Cu catalysts for CO2 hydrogenation to methanol," Applied Catalysis A: General, vol. 585, p. 117210, 2019.