بررسی اثرات ترکیب نانوسیلیکا و اکسید گرافن بر مقاومت فشاری، کششی، خمشی و سایشی ملات سیمانی خودمتراکم پرمقاومت

Authors

  • پشتبانی 1 دبیرخانه Author
  • علیرضا صادقی راد Author
  • وحید لطفی Author

Keywords:

ملات سیمانی, اکسید گرافن, نانوسیلیکا

Abstract

اثرات اکسید گرافن (GO) و نانوسیلیکا (NS) بصورت جداگانه به عنوان افزودنی بر مشخصات مکانیکی ملات سیمان و بتن در مقالات متعددی بررسی شد‌ه‌اند. در مقاله حاضر، اثرات ترکیب NS و GO بر مشخصات مکانیکی ملات سیمانی خودمتراکم پرمقاومت (SCHSCM) مورد بررسی قرار گرفته است. چهار ملات سیمانی شامل مقادیر متفاوت کلوئید NS و GO به منظور تعیین مقاومت فشاری، کششی، خمشی و سایشی ملات تقویت شده با این افزودنی¬ها تحت آزمایش قرار گرفته‌اند. در این آزمایشات، 0.0% و 0.01% وزن سیمان GO و 0.0% و 3% وزن سیمان NS برای بررسی مقاومت فیزیکی ملات به کار رفته‌اند. نشان داده شده است که استفاده همزمان از این دو افزودنی شامل 0.01% وزن سیمان GO و 3% وزن سیمان NS، مقاومت فشاری، کششی و خمشی SCHSCM را 26%، 14% و 25% افزایش می¬دهد که به طور مشخص از اثر جداگانه هریک از این نانومواد بر روی ملات سیمانی بیشتر است. مقاومت سایشی ملات سیمانی با افزودن این محلول¬ها اندکی کاهش می یابد.

References

1. J. Elsen, Microscopy of historic mortars: A review, Cem. Conc. Advn 36: 1416-1424, (2006).

2. V. Kumar, R. Singh, I. P. S. Ahuja, M. S. J. Hashemi, On technological solutions for repair and rehabilitation of heritage sites: a review, Advances in materials and processing technologies, (2019).

3. Y. Mohammadi, S. P. Singh, S. K. Kaushik, Properties of steel fibrous concrete containing mixed fibres in fresh and hardened state, Cons. Build. Mat 22: 956-965, (2008).

4. H. E. Naddaf, R. Kazemi, Experimental evaluation of the effect of mix design ratios on compressive strength of cement mortars containing cement strength class 42.5 and 52.5 MPa, procedia manufacturing 22: 392-398, (2018).

5. A. Boumiz, C. Vernet, F. C. Tenoudjit, Mechanical properties of cement pastes and mortars at early ages: Evolution with time and degree of hydration, Advn. Cem. Bas. Mat 3: 94-106, (1996).

6. X. Chen, S. Wu, J. Zhou, Influence of porosity on compressive and tensile strength of cement mortar, Cons. Build. Mat 40: 869-874, (2013).

7. C. A. Issa, J. J. Assaad, Stability and bond properties of polymer-modified self-consolidating concrete for repair applications, Mat. Struc 50: 28, (2017).

8. M. K. G. Singh, H. K. Venkatanarayanan, Performance of self-consolidating high-strength mortars developed from Portland pozzolana cement for precast applications, Mat. Civ. Eng 32: 04019375, (2020).

9. M. Sahmaran, H. A. Christiano, I. O. Yaman, The effect of chemical admixtures and mineral additives on the properties of self-compacting mortars, Cem. Conc. Comp 28: 432-440, (2006).

10. B. Xu, T. Chen, Y. Zhang, L. Jiang, Z. Liu, X. Li, Experimental study on preparation of high-strength mortar with abandoned super fine sand, Advn. Eng. Res 129: 336-342, (2017).

11. R. Huang, G. Li, C. Shi, Preparation of high strength mortar with silica fume and steel fiber, Advn. Mat. Res 739: 255-257, (2013).

12. G. Liao, W. Yao, A. She, C. Shi, J. Zuo, D. Wu, Interfacial design of nano-TiO2 modified recycled concrete powder for building self-cleaning, colloids and surfaces A: Physicochemical and engineering aspects 661: 130925, (2023).

13. H. Sun, W. Wu, Y. Zhao, Y. Lin, S. Xu, T. Zhang, X. Zhang, F. Xing, J. Ren, Mechanical and durability properties of blended OPC mortar modified by low-carbon belite (C2S) nanoparticles, Journal of Cleaner Production 305: 127087, (2021).

14. M. Almohammad-albakkar, K. Behfarnia, Effects of the combined usage of micro and nano-silica on the drying shrinkage and compressive strength of the self-compacting concrete, Journal of Sustainable Cement-Based Materials, (2020).

15. P. V. R. K. Reddy, D. Ravi-Parsad, Graphene oxide reinforced cement concrete-a study on mechanical, durability and microstructure characteristics, Fullerenes, nanotubes and carbon nanostructures 31: 255-265, (2022).

16. E. Shamsaei, F. B. D. Souza, X. Yao, E. Benhelal, A. Akbari, W. Duan, Graphene-based nanosheets for stronger and more durable concrete: A review, Cons. Build. Mat 183: 642-660, (2018).

17. P. Sikora, P. Lukowski, K. Cendrowski, E. Horszczaruk, E. Mijowska, the effect of nanosilica on the mechanical properties of polymer-cement composites (PCC), Procedia Engineering 108: 139-145, (2015).

18. C. Zhuang, Y. Chen, the effect of nano-SiO2 on concrete properties: a review, Nanotechnol 8: 562-572, (2019).

19. C. Zhou, F. Li, J. Hu, M. Ren, J. Wei, Q.Yu, Enhanced mechanical properties of cement paste by hybrid graphene oxide/carbon nanotubes, Cons. Build. Mat 134: 336-345, (2017).

20. L. Zhao, X. Guo, Y. Liu, C. Ge, L. Guo, X. Shu, J. Liu, Synergistic effects of silica nanoparticles/polycarboxylate superplasticizer modified graphene oxide on mechanical behavior and hydration process of cement composites, RSC Adv. 7: 16688–16702, (2017).

21. L. Zhao, X. Guo, C. Ge, Q. Li, L. Guo, X. Shu, J. Liu, Mechanical behavior and toughening mechanism of polycarboxylate superplasticizer modified graphene oxide reinforced cement composites, Composites Part B 113: 308–316, (2017).

22. A. M. Rashed, A comprehensive overview about the effect of nano-SIO2 on some properties of traditional cementitious materials and alkali-activate fly-ash, Cons. Build. Mat 52: 437-464, (2014).

23. M. Shakiba, P. Rahgozar, A. R. Elahi, R. Rahgozar, effect of activated pozzolan with Ca (OH)2 and nano-SiO2 on microstructure and hydration of high-volume natural pozzolan paste, Civ. Eng. Jour 4 (10): 24-37, (2018).

24. M. Jalal, E. Mansouri, M. Sharifipour, A.R. Pouladkhan, Mechanical, rheological, durability and microstructural properties of high performance self-compacting concrete containing SiO2 micro and nanoparticles, Mater. Des 34:389-400, (2012).

25. C. Liu, X. Huang, Y. Wu, X. Deng, Z. Zheng, the effect of graphene oxide on the mechanical properties, impermeability and corrosion resistance of cement mortar containing mineral admixtures, Cons. Build. Mat 288, (2021).

26. S. Lv, Y. Ma, C. Qiu, T. Sun, J. Liu, Q. Zhou, Effect of graphene oxide nanosheets on microstructure and mechanical properties of cement composites, Cons. Build. Mat 49:121-127, (2013).

27. Y. Wang, J. Yang, D. Ouyang, Effect of graphene oxide on mechanical properties of cement mortar and its strengthening mechanism, Materials, 12, 3753, (2019).

28. L.P. Singh, S.R. Karade, S.K. Bhattacharyya, M.M. Yousuf, S. Ahalawat, Beneficial role of nanosilica in cement-based material – A review, Cons. Build. Mat 47:1069-1077, (2013).

29. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696):666-669, (2004).

30. X. Huang, L. Z. Liu, S. Zhou, J. J. Zhao, Physical properties and device applications of graphene oxide, Front. Phys. 15, (2020).

31. M. Chakraborty, M. S. Hashmi, Wonder material graphene: properties, synthesis and practical applications, Advances in materials and processing technologies, (2018).

32. M. Du, H. Jing, Y. Gao, H. Su, H. Fang, Carbon nanomaterials enhanced cement-based composites: advances and challenges, nanotechnol 9:115-135, (2020).

33. A.M. Said, M.S. Zeidan, M.T. Bassuoni, Y. Tian, Properties of concrete incorporating nano-silica, Cons. Build. Mat 36:838-844, (2012).

34. H. Du, S. Du, X. Liu, Durability performances of concrete with nano-silica, Cons. Build. Mat 73:705-712, (2014).

35. L.G. Li, J.Y. Zheng, J. Zhu, A.K.H. Kwan, Combined usage of micro-silica and nano-silica in concrete: SP demand, cementing efficiencies and synergistic effect, Cons. Build. Mat 168:622-632, (2018).

36. F. T. Isfahani, E. Redaelli, F. Lollini, W. Li, L. Bertolini, Effects of nanosilica on compressive strength and durability properties of concrete with different water to binder ratios, Adv. Mat. Sci. Eng 8453567, (2016).

37. M. Somasri, B. N. Kumar, Graphene oxide as nano material in high strength self-compacting concrete, Materials Today: Proceedings 43:2280-2289, (2021).

38. Y. Shang, D. Zhang, C. Yang, Ya. Liu, Yo. Liu, Effect of graphene oxide on the rheological properties of cement pastes, Cons. Build. Mat 96:20-28, (2015).

39. J. Bjornstrom, A. martinelli, A. Matic, L. Borjesson, I. Panas, Accelerating effects of colloidal nano-silica for beneficial calcium–silicate–hydrate formation in cement, Chem. Phys. Lett 392:242-248, (2004).

40. K. Sobolev, I. Flores, L.M. Torres-Martinez, P.L. Valdez, E. Zarazua, E.L. Cuellar, Engineering of SiO2 Nanoparticles for Optimal Performance in Nano Cement-Based Materials, Nanotechnology in Construction 3, (2009).

41. B.W. Jo, C.H. Kim, G.H. Tae, J.B. Park, Characteristics of cement mortar with nano-SiO2 particles, Cons. Build. Mat 21:1351-1355, (2007).

42. L. Lu, D. Ouyang, Properties of Cement mortar and ultra-high strength concrete incorporating graphene oxide nanosheets, Nanomater 7:187, (2017).

43. F. Babak, H. Abolfazl, R. Alimorad, G. Parviz, Preparation and mechanical properties of graphene oxide: cement nanocomposites, Sci. World 2014, (2014).

44. B. Han, Q. Zheng, S. Sun, S. Dong, L. Zhang, X. Yu, J. Ou, Enhancing mechanisms of multi-layer graphene to cementitious composites, Composites: Part A 101:143-150, (2017).

45. ASTM C 144-02, Standard Specification for Aggregate for Masonry Mortar, (2002).

46. ASTM C 494/C 494M-99a, Standard Specification for Chemical Admixtures for Concrete, (1999).

47. INSO 2930-1, Admixtures for Concrete, Mortar and Grout–Part 1: Common Requirements, (2014).

48. A. Kedir, M. Gamachu, A. G. Alex, Cement-Based Graphene Oxide Composites: A Review on Their Mechanical and Microstructure Properties. Journal of Nanomaterials 6741000, (2023).

49. ASTM C109/C109M-13, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens), (2013).

50. INSO 755-2, Terrazzo tiles- part 2: For External Uses Specifications and Test methods, (2014).

51. ASTM C307-03, Standard Test Method for Tensile Strength of Chemical-Resistant Mortar, Grouts, and Monolithic Surfacing, (2003).

52. Z. Rong, W. Sun, H. Xiao, G. Jiang, Effects of nano-SiO2 particles on the mechanical and microstructural properties of ultra-high performance cementitious composites, Cem. Conc. Comp 56: 25-31, (2015).

53. S. Du, Z. tang, J. Zhong, Y. Ge, X. Shi, Effect of admixing graphene oxide on abrasion resistance of ordinary Portland cement concrete, AIP Advances 9, 105110, (2019).

54. H. Li, M. Zhang, J. Ou, Abrasion resistance of concrete containing nano-particles for pavement, Wear 260: 1262-1266, (2006).

Downloads

Published

2024-03-19

How to Cite

بررسی اثرات ترکیب نانوسیلیکا و اکسید گرافن بر مقاومت فشاری، کششی، خمشی و سایشی ملات سیمانی خودمتراکم پرمقاومت. (2024). Development Engineering Conferences Center Articles Database, 1(1). https://pubs.bcnf.ir/index.php/Articles/article/view/36

Similar Articles

You may also start an advanced similarity search for this article.