کاربرد نانوذرات در تشخیص و توسعه دارورسانی در بهبود اسکیزوفرنی: یک مقاله مروری
Keywords:
نانوذرات, نانو روانپزشکی, اسکیزوفرنی, دارورسانیAbstract
اسکیزوفرنی یکی از 25 بیماری اصلی در بیماری های جهانی است که بسیاری از سال های زندگی فرد مبتلا در برمیگیرد و فشارهای عاطفی و اقتصادی زیادی را فرد بیمار و نیز بر جامعه تحمیل می کند. برای درمان این بیماری، از روشهای متعددی برای درمان بیماران به ویژه استفاده از داروهای معمولی و غیر معمول استفاده شده است. با این حال، اسکیزوفرنی به دلیل داشتن ویژگی چند عاملی و همین طور مقاومت بیمار، هنوز یک بیماری دشوار در تشخیص و درمان است. بنابراین، باید استراتژی های جدید برای تشخیص و بهبود و نیز بهینه سازی اثربخشی و همچنین کاهش عوارض جانبی مورد تحقیق و بررسی قرار گیرد. نانو پزشکی سعی در توسعه عوامل مولکولی کم وزن برای درمان بیماری ها از طریق استفاده از حامل هایی در مقیاس نانو است. در میان نانوپزشکی، نانوروانپزشکی به طور خاص و ویژه به نقش بالقوه نانوتکنولوژی در حل مشکلات بیماریهای روانپزشکی میپردازد. بنابراین، هدف از این مقاله ارائه نمای کلی از وضعیت نانوروانپزشکی در تشخیص اسکیزوفرنی و دارورسانی به منظور درمان این بیماری است.
Downloads
References
1. Bhojani, M. S., Dort, M. V., Rehemtulla, A., Ross, B. D. (2010), “Targeted imaging and therapy of brain cancer using theranostic nanoparticles”, Mol Pharm, 7 (6), pp 1921-1929.
2. Cheng, Y., Morshed, R. A., Auffinger, B., Tobias, A. L., Lesniak, M. S. (2014), “multifunctional nanoparticles for brain tumor imaging and therapy”, Adv Drug Deliv Rev, 66 (1), pp 42-57.
3. Dening, T. J ., Rao, S., Thomas, N., Prestidge, C. A. (2016), “Oral nanomedicine approaches for the treatment of psychiatric illnesses”, J Control Release, 223 (1), pp 137-156.
4. Nascimentoو J. M., Martins-De-Souzaو D. (2015), “The proteome of schizophrenia”, NPJ Schizophr, 1 (1), pp 14003.
5. Zaidi, S. A. (2018), “Development of molecular imprinted polymers based strategies for the determination of Dopamine”, Sensors and Actuators B-Chemical, 265 (3), pp 488-497.
6. Li, C., Chen, X., Zhang, Z., Tang, J., Zhang, B. (2018), “Gold nanoparticle-DNA conjugates enhanced determination of dopamine by aptamer-based microcantilever array sensor”, Sensors and Actuators B-Chemical, 275 (1), pp 25-30.
7. Radaic, A., de Jesus, M. B. (2018), “Solid lipid nanoparticles release DNA upon endosomal acidification in human embryonic kidney cells”, Nanotechnology, 29 (31), pp 1-10.
8. Shobin, L. R., Sastikumar, D., Manivannan, S. (2014), “Glycerol mediated synthesis of silver nanowires for room temperature ammonia vapor sensing”, Sensors Actuators A Phys, 214 (1), pp 74-80.
9. Liao, C., Zhang, M., Niu, L., Zheng, Z., Yan, F. (2014), “Organic electrochemical transistors with graphene-modified gate electrodes for highly sensitive and selective dopamine sensors”, J Mater Chem B,2 (2), pp 191-200.
10. Qia, T.,Yu, C., Zhou, X., Wu, S., Shen, J. (2014), “Au nanoparticles decorated polypyrrole/reduced graphene oxide hybrid sheets for ultrasensitiye dopamine detection”, Sensors and Actuators B-Chemical,193 (1), pp 759-63.
11. Iswarya, C. N., Daniel, S. C. G. K., Sivakumar, M. (2017), “Studies on L-histidine capped Ag and Au nanoparticles for dopamine detection”, Mater Sci Eng C Mater Biol Appl, 75 (1), pp 393-401.
12. Leng, Y., et al. (2015), “Gold-nanoparticle-based colorimetric array for detection of dopamine in urine and serum”, Talanta, 139 (1), pp 89-95.
13. Anithaa, A. C., Asokan, K., Sekar, C. (2017), “Highly sensitive and selective serotonin sensor based on gamma ray irradiated tungsten trioxide nanoparticles”, Sensors and Actuators B-Chemical, 238 (1), pp 667-75.
14. Shimabukuro, M., et al. (2007), “Global hypomethylation of peripheral leukocyte DNA in male patients with schizophrenia: a potential link between epigenetics and schizophrenia”, Psychiatr Res, 41 (12), pp 1042-1046.
15. Baileyو V. J., et al. (2009), “MS-qFRET: a quantum dot-based method for analysis of DNA methylation”, Genome Res, 19 (8), pp 1455-1461.
16. Bailey, V. J., et al. (2010), “DNA methylation detection using MS-qFRET, a quantum dot-based nanoassay”, Methods, 52 (3), pp 237-241.
17. Dazzan P,. et al. (2005), “Different effects of typical and atypical antipsychotics on grey matter in first episode psychosis: the AESOP study”, Neuropsychopharmacology, 30 (4), pp 765-774.
18. Meltzer, H,. (2004), “What's atypical about atypical antipsychotic drugs?” Curr Opin Pharmacol,4 (1), pp 53-57.
19. Huang, X., Brazel, C. S. (2001), “On the importance and mechanisms of burst release in matrix-controlled drug delivery systems”, J Control Release, 73 (2-3), pp 121-136.
20. de Azevedo, C. R., et al. (2017), “Modeling of the burst release from PLGA micro and nanoparticles as function of physicochemical parameters and formulation characteristics”, Int J Pharm, 532 (1), pp 229-240.
21. Ife, A. F., Harding, I. H., Shah, R. M., Palombo, E. A., Eldridge, D. S. (2018), “Effect of pH and electrolytes on the colloidal stability of stearic acid-based lipid nanoparticles”, J Nanopart Res, 20 (12).
22. Ball, R. L., Bajaj, P.,Whitehead, K. A. (2018), “Oral delivery of siRNA lipid nanoparticles: fate in the GI tract”, Sci Rep, 8 (1),pp 2178.
23. Dong, B., Hadinoto, K. (2017), “Amorphous nanoparticle complex of perphenazine and dextran sulfate as a new solubility enhancement strategy of antipsychotic perphenazine”, Drug Dev Ind Pharm, 43 (6), pp 996-1002.
24. Venkateswarlu, V., Manjunath, K. (2004), “Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles”, J Control Release, 95 (3), pp 627-38.
25. Panda, A., Meena, J., Katara, R., Majumdar, D. K. (2016), “Formulation and characterization of clozapine and risperidone co-entrapped spray dried PLGA nanoparticles”, Pharm Dev Technol, 21 (1), pp 43-53.
26. Seju, U., Kumar, A., Sawant, K. K. (2011), “Development and evaluation of olanzapine-loaded PLGA nanoparticles for nose-to-brain delivery: in vitro and in vivo studies”, Acta Biomater, 7 (12), pp4169-4176.
27. Lukasiewicz, S., et al. (2016), “Encapsulation of clozapine in polymeric nanocapsules and its biological effects”, Colloid Surf B,140 (1), pp 342-352.
28. Manjunath, K., Venkateswarlu. V. (2005), “ Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration”, J Control Release, 107 (2), pp 215-228.
29. Alzubaidi, A. F. A., El-Helw, A-R. M., Ahmed, T. A., Ahmed, O. A. A. (2017), “The use of experimental design in the optimization of risperidone biodegradable nanoparticles: in vitro and in vivo study”, Artif Cells Nanomed Biotechnol , 45 (2), pp 313-320.
30. Vieira, S. M., et al.(2016),” A surface modification of clozapine-loaded nanocapsules improves their efficacy: a study of formulation development and biological assessment”, Colloid Surf B , 145 (1), pp 748-756.
31. Lukasiewicz, S., et al. (2017), “The interaction of clozapine loaded nanocapsules with the hCMEC/D3 cells — in vitro model of blood brain barrier”, Colloid Surf B, 159 (1), pp 200-210.
32. Joseph, E., Reddi, S., Rinwa, V., Balwani, G., Saha, R. (2017), “Design and in vivo evaluation of solid lipid nanoparticulate systems of olanzapine for acute phase schizophrenia treatment: Investigations on antipsychotic potential and adverse effects”, Eur J P Pharm Sci,104 (1), pp 315-325.
33. Natarajan, J., Baskaran, M., Humtsoe, L. C., Vadivelan, R., Justin, A. (2017), “Enhanced brain targeting efficacy of olanzapine through solid lipid nanoparticles”, Artif Cells Nanomed Biotechnol, 45 (2), pp 364-371.
34. Sood, S., Jawahar, N., Jain, K., Gowthamarajan, K., Meyyanathan, S. N.(2013),” Olanzapine loaded cationic solid lipid nanoparticles for improved oral bioavailability. Curr Nanosci,9 (1), pp 26-34.
35. Jain, K. K. (2000), “An assessment of iloperidone for the treatment of schizophrenia”, Expert Opin Investig Drugs, 9 (12), pp 2935-2943.
36. Mandpe, L., Pokharkar, V. (2013), “Targeted brain delivery of iloperidone nanostructured lipid carriers following intranasal administration: in vivo pharmacokinetics and brain distribution studies”, J Nanopharm Drug Deliv,1 (2), pp 212-225.
37. Shah, S., Parmar, B., Soniwala, M., Chavda, J. (2016), “Design, optimization, and evaluation of lurasidone hydrochloride nanocrystals”, AAPS Pharm Sci Tech, 17 (5), pp 115.
38. Greenberg, W. M., Citrome, L. (2017), “Pharmacokinetics and pharmacodynamics of lurasidone hydrochloride, a second-generation antipsychotic: a systematic review of the published literature”, Clin Pharmacokinet, 56 (5), pp 493-503.
39. Dondapati, D., Srimathkandala, M. H., Sanka, K., Bakshi, V. (2016), “Improved solubility and dissolution release profile of lurasidone by solid self-nanoemulsifying drug delivery system, Anal Chem Lett, 6 (1), pp 86-97.
40. Miao, Y., Sun, J., Chen, G., Lili, R., Ouyang, P. (2015), “Enhanced oral bioavailability of lurasidone by self-nanoemulsifying drug delivery system in fasted state”, Drug Dev Ind Pharm, 42 (8), pp 1234-1240.
41. Narayan R, et al.(2016), “Development of risperidone liposomes for brain targeting through intranasal route”, Life Sci, 163 (1), pp 38-45.
42. Patil, P.H., Wankhede, P. R., Mahajan, H. S., Zawar, L. R.(2018),”Aripiprazole-loaded polymeric micelles: fabrication, optimization and evaluation usingresponse surface method”, Recent Patents on Drug Delivery and Formulation,12 (1), pp 53-64.
43. Singh, S. K., et al.(2018), “Glycol chitosan functionalized asenapine nanostructured lipid carrier for targeted brain delivery: pharmacokinetic and teratogenic assessment”, Int J Biol Macromol,108 (1), PP 1092-1100.