بسته‌بندی مواد غذایی: مروری بر انواع مواد تشکیل دهنده، جنبه‌های بازیافت و مهاجرت شیمیایی مواد و اثر بر محیط زیست و سلامت انسان

Authors

  • سوگند مقدم Author
  • سما شریفی Author

Keywords:

بسته‌بندی, مواد غذایی, بازیافت, مهاجرت شیمیایی

Abstract

 

روند افزایشی رشد جمعیت، صنعتی شدن جوامع، بهره‌وری بیشتر از زمان و ترجیح آسایش، راحتی و تسهیل امور باعث رشد بی‌سابقه‌ی تقاضای مصرف‌کنندگان برای انواع غذای آماده، نیمه آماده و مواد اولیه غذایی شده است. این نیاز سبب پیشرفت‌های چشمگیر در صنایع مواد غذایی و به تبع آن بسته‌بندی مواد غذایی برای دردسترس قرار دادن غذای ایمن و سالم شده‌است. کاربرد بسته‌بندی مواد، فراتر از جابه‌جایی محصولات شده‌است. امروزه تمرکز اصلی بر حفظ کیفیت، ارزش تغذیه‌ای، ایمنی، افزایش زمان مصرف و ماندگاری و حداقل فساد محصولات، در کنار بازارپسندی و اقتصادی بودن آن مطرح است. این باعث شده که توجه کمتری بر بعد دیگر بسته‌بندی که شامل جنبه‌های مهاجرت شیمیایی و ورود مواد تشکیل‌دهنده بسته‌بندی به محصول، بازیافت این مواد، چالش‌های پیش‌رو و اثرات آن بر محیط زیست و متقابلا اثر آن بر سلامت انسان، مورد توجه کمتری قرار گیرد.

در این مقاله مروری بر رایج‌ترین انواع مواد بسته‌بندی محصولات غذایی از جمله پلاستیک، کاغذ و مقوا، فلزات، شیشه، بسته‌بندی‌های چندلایه و بسته‌بندی‌های نوین زیست تخریب‌پذیر شده است.

همچنین مروری بر بازیافت مواد بسته‌بندی وآلودگی شیمیایی و محیطی ناشی از آن ، روند مهاجرت شیمیایی در محصولات و اثر آن بر سلامت انسان مورد بررسی قرار گرفته‌است.

References

1. Guillard V., Gaucel S., Fornaciari C., Angellier-Coussy H., Buche P., Gontard N. The next generation of sustainable food packaging to preserve our environment in a circular economy context. Front. Nutr. 2018;5:121. doi: 10.3389/fnut.2018.00121.

2. Halonen, N., Pálvölgyi, P. S., Bassani, A., Fiorentini, C., Nair, R., Spigno, G., & Kordas, K. (2020). Bio-based smart materials for food packaging and sensors–a review. Frontiers in materials, 7, 82.

3. Becerril, R., Nerín, C., & Silva, F. (2020). Encapsulation systems for antimicrobial food packaging components: An update. Molecules, 25(5), 1134.‏

4. Nešić, A., Cabrera-Barjas, G., Dimitrijević-Branković, S., Davidović, S., Radovanović, N., & Delattre, C. (2019). Prospect of Polysaccharide-Based Materials as Advanced Food Packaging. Molecules (Basel, Switzerland), 25(1), 135. https://doi.org/10.3390/molecules25010135.

5. Tharanathan, R.N.. (2003). Biodegradable films and composite coatings: Past, present and future. Trends in Food Science & Technology. 14. 71-78. 10.1016/S0924-2244(02)00280-7.

6. Sangroniz A., Zhu J.B., Tang X., Etxeberria A., Chen E.Y.X., Sardon H. Packaging materials with desired mechanical and barrier properties and full chemical recyclability. Nat. Commun. 2019;10:1–7. doi: 10.1038/s41467-019-11525-x.

7. Firouz, M. S., Mohi-Alden, K., & Omid, M. (2021). A critical review on intelligent and active packaging in the food industry: Research and development. Food Research International, 141, 110113.

8. Wang J., Gardner D.J., Stark N.M., Bousfield D.W., Tajvidi M., Cai Z. Moisture and oxygen barrier properties of cellulose nanomaterial-based films. acs sustain. Chem. Eng. 2018;6:49–70. doi: 10.1016/j.cej.2017.09.070.

9. Vilela, Carla & Kurek, Mia & Hayouka, Zvi & Röcker, Bettina & Yildirim, Selcuk & Antunes, Maria & Nilsen-Nygaard, Julie & Pettersen, Marit & Freire, Carmen. (2018). A concise guide to active agents for active food packaging. Trends in Food Science & Technology. 80. 10.1016/j.tifs.2018.08.006.

10. Lee D., Yam K., Piergiovanni L. CRC Press; Boca Raton: 2008. Food Packaging Science and Technology.

11. Arvanitoyannis I.S., Bosnea L. Migration of substances from food packaging materials to foods. Crit. Rev. Food Sci. Nutr. 2004;44(2):63–76.

12. Mousavi S.M., Desobry S., Hardy J. Mathematical modeling of migration of volatile compounds into packaged food via package free space, Part II: Spherical shaped food. J. Food Eng. 1998;36:473–484.

13. Hotchkiss, J.H.,1997. Food‐packaging interactions influencing quality and safety. Food. Addit. Contam. 14(6–7), 601–607.

14. Marsh, Kenneth and Bugusu, Betty. “Food Packaging and Its Environmental Impact.” IFT, April 1, 2007. Retrieved March 7, 2019.

15. Alamri, M. S., Qasem, A. A. A., Mohamed, A. A., Hussain, S., Ibraheem, M. A., Shamlan, G., Alqah, H. A., & Qasha, A. S. (2021). Food packaging's materials: A food safety perspective. Saudi journal of biological sciences, 28(8), 4490–4499. https://doi.org/10.1016/j.sjbs.2021.04.047.

16. Marsh, K., & Bugusu, B. (2007). Food packaging--roles, materials, and environmental issues. Journal of Food Science, 72(3), R39–R55. https://doi.org/10.1111/j.1750-3841.2007.00301.x.

17. López-Rubio, Amparo & Almenar, Eva & Hernandez-Muñoz, Pilar & Lagaron, Jose Maria & Catala, Ramon & Gavara, Rafael. (2004). Overview of Active Polymer-Based Packaging Technologies for Food Applications. Food Reviews International. 20. 357-387. 10.1081/FRI-200033462.

18. Geueke, Birgit & Groh, Ksenia & Muncke, Jane. (2018). Food packaging in the circular economy: Overview of chemical safety aspects for commonly used materials. Journal of Cleaner Production. 193. 10.1016/j.jclepro.2018.05.005.

19. Ignatyev, I. A., Thielemans, W., & Vander Beke, B. (2014). Recycling of polymers: a review. ChemSusChem, 7(6), 1579–1593. https://doi.org/10.1002/cssc.201300898.

20. Geyer, Björn & Lorenz, Guenter & Kandelbauer, Andreas. (2016). Recycling of poly (ethylene terephthalate)-A review focusing on chemical methods. eXPRESS Polymer Letters. 10. 559-586.

21. US Environmental Protection Agency. “Advancing Sustainable Materials Management: Facts and Figures.” EPA, November 2017. Retrieved March 7, 2019.

22. Pedersen G.A., Jensen L.K., Fankhauser A., Biedermann S., Petersen J.H., Fabech B. Migration of epoxidized soybean oil (ESBO) and phthalates from twist closures into food and enforcement of the overall migration limit. Food Addit. Contam. 2008;25(4):503–510.

23. Food Standards, 2012. Survey of chemical migration from food-contact packaging materials in Australian food. Online, date retrieved. Food Standards Australia New Zealand.

24. Boon A. 4th International Symposium on Food Packaging. Prague, Czech Republic. 2008. Migration from food packaging inks. Issues & some solutions.

25. Robertson G.L. vol. 3. CRC Press; US: 2006. Safety and legislative aspects of packaging; pp. 473–502. (Food packaging principles and practice).

26. Leibman K.C. Metabolism and toxicity of styrene. Environ. Health Perspect. 1975;11:115–119.

27. Tang W., Hemm I., Eisenbrand G. Estimation of Human exposure to styrene and ethylbenzene. Toxicology. 2000;144:39–50.

28. Miltz J., Ram A., Nir M.M. Prospects for application of post-consumer used plastics in food packaging. Food Addit. Contam. 1997;14(6–7):649–659.

29. Lau O., Wong S. Contamination in food from packaging material. J. Chromatogr. A. 2000;882:255–270.

30. Castle L., Price D., Dawkins J.V. Oligomers in plastics packaging. Part 1: Migration tests for vinyl chloride tetramer. Food Addit. Contam. 1996;13(3):307–314.

31. Glüge, J., , Scheringer, M., , Cousins, I. T., , DeWitt, J. C., , Goldenman, G., , Herzke, D., , Lohmann, R., , Ng, C. A., , Trier, X., , & Wang, Z., (2020). An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environmental science. Processes & impacts, 22(12), 2345–2373. https://doi.org/10.1039/d0em00291g.

32. Bandara, R., & Indunil, G. M. (2022). Food packaging from recycled papers: chemical, physical, optical properties and heavy metal migration. Heliyon, 8(10), e10959. https://doi.org/10.1016/j.heliyon.2022.e10959.

33. US Environmental Protection Agency. “Pulp and Paper Production (MACT I & II): National Emissions Standards for Hazardous Air Pollutants (NESHAP) for Source Categories.” EPA, January 2017. Retrieved March 7, 2019.

34. Ackermann P.W., Herrmann T., Stehr C., Ball M. Status of the PCDD and PCDF contamination of commercial milk caused by milk cartons. Chemosphere. 2006;63:670–675.

35. Muncke J. Exposure to endocrine disrupting compounds via the food chain: Is packaging a relevant source. Sci. Total Environ. 2009;407:4549–4559.

36. Tricker A.R., Preussmann R. Carcinogenic Nnitrosamines in the diet: occurrence, formation, mechanisms and carcinogenic potential. Mutat. Res. 1991;259:277–289.

37. Kirwan M., Brown H., Williams J. Packaged Product Quality and Shelf Life. In: Coles R., Kirwan M., editors. Food and Beverage Packaging Technology. second ed. Wiley-Blackwell; London, UK: 2011. pp. 59–83.

38. Jelén H.H. Solid-phase microextraction in the analysis of food taints and off-flavors. J. Chromatogr. Sci. 2006;44:399–415.

39. Veríssimo, M. I., & Gomes, M. T. (2008). Aluminum migration into beverages: are dented cans safe?. The Science of the total environment, 405(1-3), 385–388. https://doi.org/10.1016/j.scitotenv.2008.05.045.

40. Ncube, L. K., Ude, A. U., Ogunmuyiwa, E. N., Zulkifli, R., & Beas, I. N. (2020). Environmental Impact of Food Packaging Materials: A Review of Contemporary Development from Conventional Plastics to Polylactic Acid Based Materials. Materials (Basel, Switzerland), 13(21), 4994. https://doi.org/10.3390/ma13214994.

41. Hydro. “Aluminum, Environment and Society.” Hydro, December 2012. Retrieved March 7, 2019.

42. Yüzbaşi N., Sezgin E., Yıldırım M., Yıldırım Z. Survey of lead, cadmium, iron, copper and zinc in Kaşar cheese. Food Addit. Contam. 2003;20:464–469.

43. Rodushkin I., Magnusson A. Aluminum migration to orange juice in laminated paperboard packages. J. Food Compost. Anal. 2005;18:365–374.

44. Kim K.-C., Park Y.-B., Lee M.-J., Kim J.-B., Huh J.-W., Kim D.-H., Lee J.-B., Kim J.-C. Levels of heavy metals in candy packages and candies likely to be consumed by small children. Food Res. Int. 2008;41:411–418.

45. Riedewald, Frank & Wilson, Edward & Patel, Yunus & Vogt, Daniel & Povey, Ian & Barton, Killian & Lewis, Liam & Caris, Tom & Santos, Silvia & O'Mahoney, Maria & Sousa-Gallagher, Maria Jose. (2022). Recycling of aluminium laminated pouches and Tetra Pak cartons by molten metal pyrolysis – Pilot-scale experiments and economic analysis. Waste Management. 138. 172-179. 10.1016/j.wasman.2021.11.049.

46. Charlier, P., Sjöberg, G. Recycling Aluminum Foil from Post-Consumer Beverage Cartons. JOM 47, 12–13 (1995). https://doi.org/10.1007/BF03221273.

47. Reimann, Clemens & Birke, M. & Filzmoser, Peter. (2010). Reply to the comment “Bottled drinking water: Water contamination from bottle materials (glass, hard PET, soft PET), the influence of colour and acidification” by Hayo Müller-Simon. Applied Geochemistry - APPL GEOCHEM. 25. 1464-1465. 10.1016/j.apgeochem.2010.07.006.

48. Angeli, F., Jollivet, P., Charpentier, T., Fournier, M., & Gin, S. (2016). Structure and Chemical Durability of Lead Crystal Glass. Environmental science & technology, 50(21), 11549–11558. https://doi.org/10.1021/acs.est.6b02971.

49. Ross, C.. (2011). Heavy Metal Issues – In and Out of Glass. 10.1002/9781118095348.ch5.

50. Beerkens, Ruud & Kers, Goos & Santen, Engelbert. (2011). Recycling of Post‐Consumer Glass: Energy Savings, CO2 Emission Reduction, Effects on Glass Quality and Glass Melting. 10.1002/9781118095348.ch16.

51. Ceola, Stefano & Favaro, Nicola & Daneo, Antonio. (2016). Glass Cullet: Impact of Color Sorting on Glass Redox State. 10.1002/9781119282471.ch5.

52. Simoneau, Catherine. (2015). Scoping investigations on the release of metals from crystalware. 10.2788/885263.

53. World Bank Group. “Pollution Prevention and Abatement Handbook 1998: Glass Manufacturing.” World Bank Group, July 1998. Retrieved March 7, 2019.

54. US Environmental Protection Agency. “Final Air Toxics Standards for Clay Ceramics Manufacturing, Glass Manufacturing, And Secondary Nonferrous Metals Processing Area Sources: Fact Sheet.” EPA, December 2007. Retreived March 7, 2019.

55. Shaw R. Assemblies Unlimited; 2013. Food packaging: 9 types and differences explained.

56. Shin, Joongmin & Selke, Susan. (2014). Food Packaging. Food Processing: Principles and Applications: Second Edition. 249-273. 10.1002/9781118846315.ch11.

57. Miles, D. C., and Briston, J. H. Polymer Technology / by D.C. Miles and J.H. Briston. 2nd Ed.]. ed. New York, N.Y.: Chemical Pub., 1979. Print.

58. Swati Pathak, CLR Sneha, Blessy Baby Mathew. Bioplastics: Its Timeline Based Scenario & Challenges. Journal of Polymer and Biopolymer Physics Chemistry. 2014; 2(4):84-90. doi: 10.12691/jpbpc-2-4-5.

59. Liu, Y., Ahmed, S., Sameen, D. E., Wang, Y., Lu, R., Dai, J., ... & Qin, W. (2021). A review of cellulose and its derivatives in biopolymer-based for food packaging application. Trends in Food Science & Technology, 112, 532-546.

60. Wilkinson F. (2004). Auras and other hallucinations: windows on the visual brain. Progress in brain research, 144, 305–320. https://doi.org/10.1016/S0079-6123(03)14421-4.

61. Chisenga, S. M., Tolesa, G. N., & Workneh, T. S. (2020). Biodegradable Food Packaging Materials and Prospects of the Fourth Industrial Revolution for Tomato Fruit and Product Handling. International journal of food science, 2020, 8879101. https://doi.org/10.1155/2020/8879101.

62. Soltani Firouz, M., Mohi-Alden, K., & Omid, M. (2021). A critical review on intelligent and active packaging in the food industry: Research and development. Food research international (Ottawa, Ont.), 141, 110113. https://doi.org/10.1016/j.foodres.2021.110113.

63. Domínguez, R., Barba, F. J., Gómez, B., Putnik, P., Kovačević, D. B., Pateiro, M., ... & Lorenzo, J. M. (2018). Active packaging films with natural antioxidants to be used in meat industry: A review. Food research international, 113, 93-101.

64. Drago, E., Campardelli, R., Pettinato, M., & Perego, P. (2020). Innovations in smart packaging concepts for food: An extensive review. Foods, 9(11), 1628.

Downloads

Published

2024-03-19

How to Cite

بسته‌بندی مواد غذایی: مروری بر انواع مواد تشکیل دهنده، جنبه‌های بازیافت و مهاجرت شیمیایی مواد و اثر بر محیط زیست و سلامت انسان. (2024). Development Engineering Conferences Center Articles Database, 1(1). https://pubs.bcnf.ir/index.php/Articles/article/view/27

Similar Articles

11-20 of 39

You may also start an advanced similarity search for this article.