Comparison and Review of ALD Target Materials for Quantum Dot Solar Cells: Al_2 O_3, TiO_2, ZnO, HFO_2, WN, and NiO

Authors

  • Mehran Hosseinzadeh Dizaj Islamic Azad University, Central Tehran Branch Author

Keywords:

ALD, Al_2 O_3, TiO_2, ZnO, HFO_2, WN, NiO

Abstract

In the Atomic Layer Deposition (ALD) method, the choice of target materials is critical for achieving precise control over thin film properties such as thickness, composition, and uniformity, which directly impact the performance of devices like quantum dot solar cells. The ability to deposit high-quality films with specific electrical, optical, and mechanical properties is essential for optimizing device efficiency and longevity. Each target material offers unique advantages and challenges, influencing the overall functionality and reliability of the final product. Therefore, careful selection and optimization of target materials are crucial for advancing technologies that rely on ALD. In the ALD method, Al_2 O_3 is prized for its excellent dielectric properties and thermal stability, making it ideal for insulating layers, while TiO_2 offers high refractive index and photocatalytic capabilities, suitable for optical coatings and sensors. ZnO provides transparency and conductivity for electronic applications, HFO_2 delivers high-k dielectric properties for semiconductor devices, WN serves as an effective diffusion barrier, and NiO is utilized for its electrochromic and catalytic properties [1], [2], [3].

Author Biography

  • Mehran Hosseinzadeh Dizaj, Islamic Azad University, Central Tehran Branch

      

References

[1] J. B. Baxter, “ZnO Nanowire‐Based Solar Cells,” Wide Band Gap Semicond. Nanowires 2 Heterostruct. Optoelectron. Devices, pp. 227–252, 2014.

[2] S. M. George, “Atomic layer deposition: an overview,” Chem. Rev., vol. 110, no. 1, pp. 111–131, 2010.

[3] T.-L. Li, Y.-L. Lee, and H. Teng, “High-performance quantum dot-sensitized solar cells based on sensitization with CuInS2 quantum dots/CdS heterostructure,” Energy Environ. Sci., vol. 5, no. 1, pp. 5315–5324, 2012.

[4] M. Grätzel, “Recent advances in sensitized mesoscopic solar cells,” Acc. Chem. Res., vol. 42, no. 11, pp. 1788–1798, 2009.

[5] S. Zhao, “Surface Modification of ZnO Based Dye-Sensitized Solar Cells.” Michigan Technological University, 2020.

[6] V. Miikkulainen, M. Leskelä, M. Ritala, and R. L. Puurunen, “Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends,” J. Appl. Phys., vol. 113, no. 2, 2013.

[7] M. Ritala and M. Leskelä, “Atomic layer deposition,” in Handbook of Thin Films, Elsevier, 2002, pp. 103–159.

[8] A. J. M. Mackus, A. A. Bol, and W. M. M. Kessels, “The use of atomic layer deposition in advanced nanopatterning,” Nanoscale, vol. 6, no. 19, pp. 10941–10960, 2014.

[9] R. W. Johnson, A. Hultqvist, and S. F. Bent, “A brief review of atomic layer deposition: from fundamentals to applications,” Mater. today, vol. 17, no. 5, pp. 236–246, 2014.

[10] J. W. Elam, M. D. Groner, and S. M. George, “Viscous flow reactor with quartz crystal microbalance for thin film growth by atomic layer deposition,” Rev. Sci. Instrum., vol. 73, no. 8, pp. 2981–2987, 2002.

[11] R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” J. Appl. Phys., vol. 97, no. 12, 2005.

[12] M. Knez, K. Nielsch, and L. Niinistö, “Synthesis and surface engineering of complex nanostructures by atomic layer deposition,” Adv. Mater., vol. 19, no. 21, pp. 3425–3438, 2007.

[13] M. Leskelä and M. Ritala, “Atomic layer deposition (ALD): from precursors to thin film structures,” Thin Solid Films, vol. 409, no. 1, pp. 138–146, 2002.

[14] V. I. Klimov, “Detailed-balance power conversion limits of nanocrystal-quantum-dot solar cells in the presence of carrier multiplication,” Appl. Phys. Lett., vol. 89, no. 12, 2006.

[15] D. Bera, L. Qian, T.-K. Tseng, and P. H. Holloway, “Quantum dots and their multimodal applications: a review,” Materials (Basel)., vol. 3, no. 4, pp. 2260–2345, 2010.

[16] E. H. Sargent, “Colloidal quantum dot solar cells,” Nat. Photonics, vol. 6, no. 3, pp. 133–135, 2012.

[17] P. V Kamat, “Quantum dot solar cells. The next big thing in photovoltaics,” J. Phys. Chem. Lett., vol. 4, no. 6, pp. 908–918, 2013.

[18] A. J. Nozik, “Quantum dot solar cells,” Phys. E Low-dimensional Syst. Nanostructures, vol. 14, no. 1–2, pp. 115–120, 2002.

[19] P. Hermkens, “Atomic layer deposition of ZnO and Al-doped ZnO,” no. July, p. 21, 2012.

[20] B. Macco, B. W. H. van de Loo, and W. M. M. Kessels, “Atomic Layer Deposition for High‐Efficiency Crystalline Silicon Solar Cells,” At. Layer Depos. Energy Convers. Appl., pp. 41–99, 2017.

[21] M. H. Dizaj and A. Assari, “Using Tandem method in cadmium-telluride cells to increase solar cell efficiency”.

[22] M. H. Dizaj, “Design and implementation of grid-connected photovoltaic power plant with the highest technical Efficiency,” arXiv Prepr. arXiv2308.08014, 2023.

[23] M. Wei, M. Xiong, I. Wu, and J. Wang, “Fabrication and Material-Centric Design of Atomic Layer Deposition (ALD) Enabled Micromechanical Resonators,” Nanosci. Nanotechnol. Lett., vol. 2, no. 2, pp. 157–162, 2010.

[24] M. A. Forte, R. M. Silva, C. J. Tavares, and Rf. I. P. Silva, “a Suitable Substrate for ALD?: A Re-view. Polymers 2021, 13, 1346.” s Note: MDPI stays neutral with regard to jurisdictional claims in published …, 2021.

[25] J.-P. Niemelä, “Thin Films of TiO2 and Related Oxides by ALD/MLD: Tailoring of Transport Properties,” 2015.

[26] M. H. Dizaj, “Calculating the efficiency of perovskite solar cells using formula (PCE=[(Voc. Jsc. FF)/Pin]. 100%) and increasing and obtaining the quality of the HTL layer in perovskite solar cells using formula (FF= Pmax/(Voc. Jsc)).,” energy Convers., vol. 2, p. 7, 2024, [Online]. Available: https://www.researchgate.net/profile/Mehran-Hosseinzadeh-Dizaj/publication/379181287_Calculating_the_efficiency_of_perovskite_solar_cells_using_formula_PCE_VocJsc_FFPin100_and_increasing_and_obtaining_the_quality_of_the_HTL_layer_in_perovskite_solar_cells

[27] S. Lin, “Atomic Layer Deposition (ALD) Process Development of Nb-doped TiO₂ as a Transparent Conducting Oxide (TCO) and ALD of HfO₂/Nb₂O₅ Bilayers as Insulating Barriers for Metal/Insulator/Insulator/Metal (MIIM) Diodes,” 2016.

[28] C. Guerra‐Nuñez, H. G. Park, and I. Utke, “Atomic layer deposition for surface and interface engineering in nanostructured photovoltaic devices,” At. Layer Depos. Energy Convers. Appl., pp. 119–148, 2017.

[29] N. Pinna and M. Knez, “Atomic Layer Deposition of Nanostructured Materials”.

[30] M. H. Dizaj, “2D perovskite solar cells and layering with 2D and 3D materials. 2022.” 2022.

[31] C. Hao, J. Peng, R. Zierold, and R. H. Blick, “Atomic Layer Deposition Films for Resistive Random‐Access Memories,” Adv. Mater. Technol., p. 2301762, 2024.

[32] R. A.-S. AF1-MoA, “Monday Afternoon, June 29, 2020”.

[33] S. Sirvio, L. Sainiemi, S. Franssila, and K. Grigoras, “Atomic layer deposition of al2o3, tio2 and zno films into high aspect ratio pores,” in TRANSDUCERS 2007-2007 International Solid-State Sensors, Actuators and Microsystems Conference, IEEE, 2007, pp. 521–524.

[34] S. Zhu, J. Xu, L. Wang, Y. Huang, and W. M. Tang, “Comparison of interfacial and electrical properties between Al2O3 and ZnO as interface passivation layer of GaAs MOS device with HfTiO gate dielectric,” J. Semicond., vol. 36, no. 3, p. 34006, 2015.

[35] M. H. Dizaj and M. J. Torkamani, “Design and simulation of perovskite solar cells with ZnO and graphene,” Clin. Cancer Investig. J., vol. 11, no. 1 s, 2023.

[36] F. Trabelsi, “Sol-gel/ALD low temperature process: study of Al2O3 and codoped TiO2 nanostructures for photovoltaic applications.” Université Grenoble Alpes [2020-....]; Université de Sfax. Faculté des sciences, 2021.

[37] S. Sirviö, “Characterization of Atomic Layer Deposited Thin Films: Conformality in High Aspect Ratio Pores and the Electrical Properties of Capacitors,” 2014.

[38] J. Felizco et al., “Enhanced thermoelectric transport and stability in atomic layer deposited-HfO2/ZnO and TiO2/ZnO-sandwiched multilayer thin films,” ACS Appl. Mater. Interfaces, vol. 12, no. 43, pp. 49210–49218, 2020.

[39] ح. ز. دیزج, مهران, صالحی, ناظریان, and وحدت, “تخمین پارامترهای سلول فتوولتائیک با استفاده از الگوریتم فراابتکاری جستجوی فاخته,” فناوری های نوین مهندسی برق در سیستم انرژی سبز, 2024.

[40] S. Gierałtowska, W. Zaleszczyk, M. Putkonen, D. Zasada, K. P. Korona, and M. Norek, “Regularly arranged ZnO/TiO2, HfO2, and ZrO2 core/shell hybrid nanostructures-towards selection of the optimal shell material for efficient ZnO-based UV light emitters,” Ceram. Int., vol. 49, no. 19, pp. 31679–31690, 2023.

[41] H. Ates, S. Bolat, F. Oruc, and A. K. Okyay, “Electronic and Optical Properties of Atomic Layer-Deposited ZnO and TiO 2,” J. Electron. Mater., vol. 47, pp. 4508–4514, 2018.

[42] P. J. Evans, Y. Murai, M. J. Lindsay, J. Davis, and G. Triani, “Properties of ALD Al2O3 protective coatings,” 2010.

[43] F. B. Oruç, “ZnO, TiO2 and Exotic Materials for Low Temperature Thin Film Electronic Devices.” Bilkent Universitesi (Turkey), 2012.

[44] M. Heikkinen, R. Ghiyasi, and M. Karppinen, “Layer‐Engineered Functional Multilayer Thin‐Film Structures and Interfaces through Atomic and Molecular Layer Deposition,” Adv. Mater. Interfaces, p. 2400262, 2024.

[45] E. C. Durmaz, “HfO2, Al2O3, and ZnO based Metal-Insulator-Metal photovoltaic structures for solar cell applications.” 2018.

[46] J. S. Daubert et al., “Corrosion protection of copper using Al2O3, TiO2, ZnO, HfO2, and ZrO2 atomic layer deposition,” ACS Appl. Mater. Interfaces, vol. 9, no. 4, pp. 4192–4201, 2017.

[47] S. Gieraltowska, L. Wachnicki, and M. Godlewski, “ALD Oxides-Based nip Heterostructure Light Emitting Diodes.,” Acta Phys. Pol. A, vol. 134, no. 2, 2018.

Downloads

Published

2024-09-21

How to Cite

Comparison and Review of ALD Target Materials for Quantum Dot Solar Cells: Al_2 O_3, TiO_2, ZnO, HFO_2, WN, and NiO. (2024). Development Engineering Conferences Center Articles Database, 1(3). https://pubs.bcnf.ir/index.php/Articles/article/view/110

Similar Articles

1-10 of 50

You may also start an advanced similarity search for this article.