Study of DFT calculations on the interaction and molecular properties of the drug molecule carmustine with the surface of a carbon nanotube (8,0) from different directions
Keywords:
Gaussian, DFT, Carbon Nanotube, Carmustine, molecular propertiesAbstract
This research involved drawing the structures and optimizing the drug molecule carmustine and a single-walled carbon nanotube (8,0) using Gaussian09, GaussView, and Nanotube Modeler software. By employing Density Functional Theory (DFT) and the 6-31G basis set, we examined the interaction of the drug molecule carmustine with the surface of the carbon nanotube from various angles.
Additionally, we calculated physical properties such as ionization potential, chemical potential, electron affinity, hardness, softness, and the gap between the Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) of the drug molecule both before and after placement on the nanotubes. The results indicate that the drug molecule shows the highest absorption and interaction with the carbon nanotube surface when approached from the oxygen side.
References
[1] Y-H. Li, T-H. Hung, C-W. Chen, Carbon 47 (2009) 850.
[2] N. Saikia, R.C. Deka, Chem. Phys. Lett. 500 (2010) 65.
[3] M.K. Shukla, M. Dubey, E. Zakar, R. Namburu, J. Leszczynski, Chem. Phys. Lett. 496 (2010) 128.
[4] A. Soltani, M.R. Taghartapeh, H. Mighani, A.A. Pahlevani, R. Mashkoor, Appl. Surf. Sci. 259 (2012) 637.
[5] Sertbakan, T.R. (2017) Structure, Spectroscopic and Quantum Chemical Investigations of 4-Amino-2-Methyl-8-(Trifluoromethyl) Quinoline. Celal Bayar University Journal of Science, 13, 851-861.
[6] Suresh, D.M., Amalanathan, M., Sebastian, S., Sajan, D., Joe, I.H., Jothy, V.B. and Nemec, I. (2013) Vibrational Spectral Investigation and Natural Bond Orbital Analysis of Pharmaceutical Compound 7-Amino-2,4-Dimethylquinolinium formate—DFT Approach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 115, 595-602.
[7] R. G. Parr, L. V. Szentpaly, S. Liu. J. Am. Chem. Soc. 121(1999) 1922-1924.
[8] J. C. Phillips, Phys. Rev. 123 (1961) 420.
[9] T. Koopmans, Physica1 (2006) 104.
[10] K. K. Hazarika, N.C. Baruah, R. C. Deka. Struct. Chem. 20 (2009) 1079-1085.
[11] X. M. Li, W. Q. Tian, X. R. Huang, C. C. Sun, L. Jiang, J. Mol. Stru. (THEOCHEM) 901 (2009) 103- 109.