Synthesis and identification of defective metal-organic frameworks based on chromium and investigation of their catalytic application in the carbon dioxide fixation reaction
کلمات کلیدی:
Metal-organic framework, CO2 fixation, MIL-101-Cr, Structural defect, Catalysisچکیده
This research focuses on the synthesis, characterization, and catalytic evaluation of defect-engineered chromium-based MOFs, specifically MIL-101-Cr. Defects were introduced into the structure using benzoic acid as a modulator throughout the solvothermal synthesis method. The study explores the impact of these structural modifications on the catalytic efficiency of MIL-101-Cr in CO₂ fixation reactions. Comprehensive characterization techniques, including XRD, SEM, BET, FTIR, and TPD, were utilized to analyze the structural, morphological, and thermal properties of the defective MOFs. Catalytic tests revealed significant improvements in CO₂ conversion and epoxide ring-opening reactions, with the defective MOFs achieving a conversion rate of up to 90% under optimized conditions. These findings emphasize the promise of defect-engineered MIL-101-Cr as a highly efficient catalyst for sustainable CO₂ utilization, contributing to advancements in green chemistry and environmental remediation.
دانلودها
مراجع
[1] R. Grünker, V. Bon, P. Müller, U. Stoeck, S. Krause, U. Mueller, I. Senkovska, S. Kaskel, A new metal-organic framework with ultra-high surface area, Chem. Commun. 50 (2014) 3450–3452. https://doi.org/10.1039/c4cc00113c.
[2] C. Duan, F. Li, H. Zhang, J. Li, X. Wang, H. Xi, Template synthesis of hierarchical porous metal-organic frameworks with tunable porosity, RSC Adv. 7 (2017) 52245–52251. https://doi.org/10.1039/c7ra08798e.
[3] A.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang, J.T. Hupp, O.K. Farha, Chemical, thermal and mechanical stabilities of metal-organic frameworks, Nat. Rev. Mater. 1 (2016) 1–16. https://doi.org/10.1038/natrevmats.2015.18.
[4] H. Li, K. Wang, Y. Sun, C.T. Lollar, J. Li, H.C. Zhou, Recent advances in gas storage and separation using metal–organic frameworks, Mater. Today 21 (2018) 108–121. https://doi.org/10.1016/j.mattod.2017.07.006.
[5] H. Li, L. Li, R.B. Lin, W. Zhou, Z. Zhang, S. Xiang, B. Chen, Porous metal-organic frameworks for gas storage and separation: Status and challenges, EnergyChem 1 (2019) 100006. https://doi.org/10.1016/j.enchem.2019.100006.
[6] C. Chen, X. Ji, Y. Xiong, J. Jiang, Ni/Ce co-doping metal–organic framework catalysts with oxygen vacancy for catalytic transfer hydrodeoxygenation of lignin derivatives vanillin, Chem. Eng. J. 481 (2024) 148555. https://doi.org/10.1016/j.cej.2024.148555.
[7] Z. Wang, A. Bilegsaikhan, R.T. Jerozal, T.A. Pitt, P.J. Milner, Evaluating the Robustness of Metal-Organic Frameworks for Synthetic Chemistry, ACS Appl. Mater. Interfaces 13 (2021) 17517–17531. https://doi.org/10.1021/acsami.1c01329.
[8] F. Jing, R. Liang, J. Xiong, R. Chen, S. Zhang, Y. Li, L. Wu, Chromium(III) Terephthalate Metal Organic Framework (MIL-101): HF-Free Synthesis, Structure, Polyoxometalate Composites, and Catalytic Properties, Appl. Catal. B Environ. 206 (2017) 9–15.
[9] Y. Xu, X. Gao, Q. Wang, X. Wang, Z. Ji, C. Gao, Highly stable MIL-101(Cr) doped water permeable thin film nanocomposite membranes for water treatment, RSC Adv. 6 (2016) 82669–82675. https://doi.org/10.1039/c6ra16896e.
[10] H. Zhuang, W. Zhang, L. Wang, Y. Zhu, Y. Xi, X. Lin, Vapor Deposition-Prepared MIL-100(Cr)- And MIL-101(Cr)-Supported Iron Catalysts for Effectively Removing Organic Pollutants from Water, ACS Omega 6 (2021) 25311–25322. https://doi.org/10.1021/acsomega.1c03118.
[11] Z. Fang, B. Bueken, D.E. De Vos, R.A. Fischer, Defect-Engineered Metal-Organic Frameworks, Angew. Chemie - Int. Ed. 54 (2015) 7234–7254. https://doi.org/10.1002/anie.201411540.
[12] Z. Fang, J.P. Dürholt, M. Kauer, W. Zhang, C. Lochenie, B. Jee, B. Albada, N. Metzler-Nolte, A. Pöppl, B. Weber, M. Muhler, Y. Wang, R. Schmid, R.A. Fischer, Structural complexity in metal-organic frameworks: Simultaneous modification of open metal sites and hierarchical porosity by systematic doping with defective linkers, J. Am. Chem. Soc. 136 (2014) 9627–9636. https://doi.org/10.1021/ja503218j.
[13] M.A. Syzgantseva, C.P. Ireland, F.M. Ebrahim, B. Smit, O.A. Syzgantseva, Metal Substitution as the Method of Modifying Electronic Structure of Metal-Organic Frameworks, J. Am. Chem. Soc. 141 (2019) 6271–6278. https://doi.org/10.1021/jacs.8b13667.
[14] S. He, L.X. Li, L.T. Zhang, S. Zeng, C. Feng, X.X. Chen, H.L. Zhou, X.C. Huang, Elucidating influences of defects and thermal treatments on CO2 capture of a Zr-based metal–organic framework, Chem. Eng. J. 479 (2024) 147605. https://doi.org/10.1016/j.cej.2023.147605.
[15] J. Wang, L. Liu, C. Chen, X. Dong, Q. Wang, L. Alfilfil, M.R. Alalouni, K. Yao, J. Huang, D. Zhang, Y. Han, Engineering effective structural defects of metal-organic frameworks to enhance their catalytic performances, J. Mater. Chem. A 8 (2020) 4464–4472. https://doi.org/10.1039/c9ta12230c.
[16] A. Zhang, B. Liu, M. Liu, Z. Xie, D. Wang, G. Feng, The adsorption properties of defect controlled metal-organic frameworks of UiO-66, Sep. Purif. Technol. 270 (2021) 118842. https://doi.org/10.1016/j.seppur.2021.118842.
[17] K. Wang, C. Li, Y. Liang, T. Han, H. Huang, Q. Yang, D. Liu, C. Zhong, Rational construction of defects in a metal-organic framework for highly efficient adsorption and separation of dyes, Chem. Eng. J. 289 (2016) 486–493. https://doi.org/10.1016/j.cej.2016.01.019.
[18] H. Salehizadeh, N. Yan, R. Farnood, Recent advances in microbial CO2 fixation and conversion to value-added products, Chem. Eng. J. 390 (2020) 124584. https://doi.org/10.1016/j.cej.2020.124584.
[19] K. Eyuboglu, RESEARCH ARTICLE A new perspective to environmental degradation : the linkages between higher education and CO 2 emissions, (2020).
[20] P. Xu, J. Li, J. Qian, B. Wang, J. Liu, R. Xu, P. Chen, W. Zhou, Recent advances in CO2 fixation by microalgae and its potential contribution to carbon neutrality, Chemosphere 319 (2023) 137987. https://doi.org/10.1016/j.chemosphere.2023.137987.
[21] A. Nisar, S. Khan, M. Hameed, A. Nisar, H. Ahmad, S.A. Mehmood, Bio-conversion of CO2 into biofuels and other value-added chemicals via metabolic engineering, Microbiol. Res. 251 (2021) 126813. https://doi.org/10.1016/j.micres.2021.126813.
[22] Y. Yang, L. Jin, L. Zhou, X. Du, A molecular study of humid CO2 adsorption capacity by Mg-MOF-74 surfaces with ligand functionalization, Comput. Mater. Sci. 209 (2022) 111407. https://doi.org/10.1016/j.commatsci.2022.111407.
[23] K. Huang, Q. Li, X.Y. Zhang, D. Bin Qin, B. Zhao, Copper-Cluster-Based MOF as a Heterogeneous Catalyst for CO2Chemical Fixation and Azide-Alkyne Cycloaddition, Cryst. Growth Des. 22 (2022) 6531–6538. https://doi.org/10.1021/acs.cgd.2c00733.
[24] J.J. Han, Q. ruo Yan, Z. wen Chen, Z. Wang, C. Chen, Application of Cr-metal organic framework (MOF) modified polyaniline/graphene oxide materials in supercapacitors, Ionics (Kiel). 28 (2022) 2349–2362. https://doi.org/10.1007/s11581-022-04443-4.
[25] M.K. Leszczyński, K. Niepiekło, M. Terlecki, I. Justyniak, J. Lewiński, Chromium(II)-isophthalate 2D MOF with Redox-Tailorable Gas Adsorption Selectivity, ACS Appl. Mater. Interfaces 16 (2024) 45100–45106. https://doi.org/10.1021/acsami.4c06228.
[26] H. Hassan, M. Shoaib, khakemin khan, M.A. Ghanem, M. Osman, Graphene quantum dots decorated on chromium oxide and zirconium metal-organic framework composite (GQDs@Zr-MOF/Cr2O3) for asymmetric supercapacitors and hydrogen production, Mater. Chem. Phys. 332 (2025) 130225. https://doi.org/10.1016/j.matchemphys.2024.130225.
[27] C.Y. Huang, M. Song, Z.Y. Gu, H.F. Wang, X.P. Yan, Probing the adsorption characteristic of metal-organic framework MIL-101 for volatile organic compounds by quartz crystal microbalance, Environ. Sci. Technol. 45 (2011) 4490–4496. https://doi.org/10.1021/es200256q.
[28] C. Serre, F. Millange, G. Fe, A Chromium Terephthalate – Based Solid with Unusually Large Pore Volumes and Surface Area, 309 (2005).
[29] Y. Zhang, C. Sun, Y. Ji, K. Bi, H. Tian, B. Wang, Engineering linker-defects of MIL-101 series metal organic frameworks for boosted Yb ( III ) adsorption, Sep. Purif. Technol. 330 (2024) 125293. https://doi.org/10.1016/j.seppur.2023.125293.
[30] K. Suttiponparnit, J. Jiang, M. Sahu, S. Suvachittanont, T. Charinpanitkul, P. Biswas, Role of Surface Area, Primary Particle Size, and Crystal Phase on Titanium Dioxide Nanoparticle Dispersion Properties, Nanoscale Res. Lett. 6 (2011) 1–8. https://doi.org/10.1007/s11671-010-9772-1.
[31] J. Wang, Y. Xia, Y. Dong, R. Chen, L. Xiang, S. Komarneni, Defect-rich ZnO nanosheets of high surface area as an efficient visible-light photocatalyst, Appl. Catal. B Environ. 192 (2016) 8–16. https://doi.org/10.1016/j.apcatb.2016.03.040.
[32] C. Yang, Y. Lu, L. Zhang, Z. Kong, T. Yang, L. Tao, Y. Zou, S. Wang, Defect Engineering on CeO2-Based Catalysts for Heterogeneous Catalytic Applications, Small Struct. 2 (2021). https://doi.org/10.1002/sstr.202100058.
[33] X. Ren, C.C. Wang, Y. Li, P. Wang, S. Gao, Defective SO3H-MIL-101(Cr) for capturing different cationic metal ions: Performances and mechanisms, J. Hazard. Mater. 445 (2023). https://doi.org/10.1016/j.jhazmat.2022.130552.
[34] S. Xu, S. Chansai, C. Stere, B. Inceesungvorn, A. Goguet, K. Wangkawong, S.F.R. Taylor, N. Al-janabi, C. Hardacre, P.A. Martin, X. Fan, Sustaining metal – organic frameworks for water – gas shift catalysis by non-thermal plasma - Supplementary Information, Nat. Catal. 2 (2019) 142–148.
[35] L.J. Zhang, F.Q. Li, J.X. Ren, L.B. Ma, M.Q. Li, Preparation of metal organic frameworks MIL-101 (Cr) with acetic acid as mineralizer, IOP Conf. Ser. Earth Environ. Sci. 199 (2018). https://doi.org/10.1088/1755-1315/199/4/042038.
[36] R.A. Yang, S. Cho, S.N. Hughes, M.L. Sarazen, Implications of Defect Density and Polymer Interactions for CO2 Capture on Amine-Functionalized MIL-101(Cr), ChemSusChem 202400249 (2024) 1–13. https://doi.org/10.1002/cssc.202400249.
[37] A. Bezaatpour, M. Amiri, H. Vocke, P. Bottke, M.F. Zastrau, M. Weers, M. Wark, Low-pressure CO2fixation with epoxides via a new modified nano crystalline NH2-MIL-101(Cr) in Solvent-free and cocatalyst free condition, J. CO2 Util. 68 (2023) 102366. https://doi.org/10.1016/j.jcou.2022.102366