Immobilization of a Natural Deep Eutectic Solvent on PVA Nanofibers without Morphological Disruption: Toward Green Pharmaceutical Analysis
کلمات کلیدی:
Immobilization, Green QuEChERS, Hydrophobic natural deep eutectic solvent, Anti-diabetic drugsچکیده
In this research, a green and reproducible Quick Easy Cheap Effective Rugged Safe (QuEChERS) method based on syringe filter based micro-solid phase extraction (SF-µSPE) coupled with HPLC-UV using a green sorbent was developed and optimized for the extraction of five anti-diabetic drugs from wastewater, serum, and plasma real samples. A novel green sorbent composed of a liquid mixture of thymol: menthol ([Thy]:[Men], 1:1) hydrophobic natural deep eutectic solvent (HNADES) and curcumin (Cur) immobilized into the non-toxic and biodegradable polyvinyl alcohol (PVA) electrospun nanofibers’ mat was synthesized simply via cheap equipment. Cur was added to enhance the hydrophobicity and functionality of the sorbent. The immobilization process was performed by soaking the mat in the liquid mixture for a specific duration. The correct synthesis and experimental molar ratio of the HNADES components were confirmed by NMR (1H and 13C) and ATR-FTIR spectroscopy. The prepared green sorbent (Cur-HNADES/PVA) was characterized using ATR-FTIR, FE-SEM, EDX/EDX mapping analysis, and water contact angle (WCA) measurement, and it exhibited satisfactory adsorption capacity for the target analytes.
Under optimal conditions (pH = 6.0, adsorption cycle = 3, sample volume = 5.0 mL, desorption cycle = 1, type and volume of elution = 80:20 %v/v MeOH/ACN and 500.0 µL), the method was validated in terms of specificity, linear dynamic ranges (LDRs = 0.1-2000.0 µg L-1 and 0.1-1800.0 µg L-1), limits of detection (LODs = 0.03-0.09 µg L-1), and precision (within-day RSDs% = 0.32-1.45% and between-day RSDs% = 0.59-2.03%). Evaluation of the greenness aspects of the proposed method was accomplished using the Green Analytical Procedure Index (GAPI) and Analytical GREEnness (AGREE) approaches. It is noteworthy that the conducted research represents the first report on the synthesis and application of this novel and green sorbent for the determination of anti-diabetic drugs in the mentioned real samples.
دانلودها
مراجع
REFERENCES
[1] P. Stamou, A. Parla, A. Kabir, K.G. Furton, D. Gennimata, V. Samanidou, I. Panderi, Hydrophilic interaction liquid chromatography–electrospray ionization mass spectrometry combined with fabric phase sorptive extraction for therapeutic drug monitoring of pioglitazone, repaglinide, and nateglinide in human plasma, J. Chromatogr. B. 1217 (2023) 123628. https://doi.org/10.1016/J.JCHROMB.2023.123628.
[2] S. Rakusanova, T. Cajka, Current analytical methods to monitor type 2 diabetes medication in biological samples, TrAC Trends Anal. Chem. 158 (2023) 116831. https://doi.org/10.1016/J.TRAC.2022.116831.
[3] E. Lazzaroni, M. Ben Nasr, C. Loretelli, I. Pastore, L. Plebani, M.E. Lunati, L. Vallone, A.M. Bolla, A. Rossi, L. Montefusco, E. Ippolito, C. Berra, F. D’Addio, G.V. Zuccotti, P. Fiorina, Anti-diabetic drugs and weight loss in patients with type 2 diabetes, Pharmacol. Res. 171 (2021) 105782. https://doi.org/10.1016/J.PHRS.2021.105782.
[4] W. Lu, H. Chen, Application of deep eutectic solvents (DESs) as trace level drug extractants and drug solubility enhancers: State-of-the-art, prospects and challenges, J. Mol. Liq. 349 (2022) 118105. https://doi.org/10.1016/J.MOLLIQ.2021.118105.
[5] A. Balakrishnan, M. Sillanpää, M.M. Jacob, D.V.N. Vo, Metformin as an emerging concern in wastewater: Occurrence, analysis and treatment methods, Environ. Res. 213 (2022) 113613. https://doi.org/10.1016/J.ENVRES.2022.113613.
[6] D.C. de Andrade, S.A. Monteiro, J. Merib, A review on recent applications of deep eutectic solvents in microextraction techniques for the analysis of biological matrices, Adv. Sample Prep. 1 (2022) 100007. https://doi.org/10.1016/J.SAMPRE.2022.100007.
[7] S. Soltani, H. Sereshti, A green alternative QuEChERS developed based on green deep eutectic solvents coupled with gas chromatography-mass spectrometry for the analysis of pesticides in tea samples, Food Chem. 380 (2022) 132181. https://doi.org/10.1016/J.FOODCHEM.2022.132181.
[8] H. Sereshti, M. Zarei-Hosseinabadi, S. Soltani, M. Taghizadeh, Green vortex-assisted emulsification microextraction using a ternary deep eutectic solvent for extraction of tetracyclines in infant formulas, Food Chem. 396 (2022) 133743. https://doi.org/10.1016/J.FOODCHEM.2022.133743.
[9] I. Vasconcelos, P.H.R. da Silva, D.R.D. Dias, M.B. de Freitas Marques, W. da Nova Mussel, T.A. Pedrosa, M.E.S. Ribeiro e Silva, R.F. de Souza Freitas, R.G. de Sousa, C. Fernandes, Synthesis and characterization of a molecularly imprinted polymer (MIP) for solid-phase extraction of the antidiabetic gliclazide from human plasma, Mater. Sci. Eng. C. 116 (2020) 111191. https://doi.org/10.1016/j.msec.2020.111191.
[10] K.S. Lakshmi, T. Rajesh, Separation and Quantification of Eight Antidiabetic Drugs on A High-Performance Liquid Chromatography: Its Application to Human Plasma Assay, ISRN Pharm. 2011 (2011) 1–7. https://doi.org/10.5402/2011/521353.
[11] R.N. Rao, P.K. Maurya, S. Khalid, Development of a molecularly imprinted polymer for selective extraction followed by liquid chromatographic determination of sitagliptin in rat plasma and urine, Talanta. 85 (2011) 950–957. https://doi.org/10.1016/j.talanta.2011.05.002.
[12] A. Gholami, F. Bahrami, M. Faraji, Sensitive simultaneous measurement of metformin and linagliptin
https://chemistry.bcnf.ir Page 24
in plasma samples by couple of nano graphene oxide-based dispersive solid phase extraction method and liquid chromatography, Iran. J. Pharm. Res. 19 (2020) 274–282. https://doi.org/10.22037/ijpr.2019.111659.13292.
[13] A.H. Kamal, M.A. Hammad, R.E. Kannouma, F.R. Mansour, Response surface optimization of a vortex-assisted dispersive liquid–liquid microextraction method for highly sensitive determination of repaglinide in environmental water by HPLC/UV, BMC Chem. 16 (2022) 1–11. https://doi.org/10.1186/s13065-022-00826-w.
[14] M.M. Mabrouk, S.M. Soliman, H.M. El-Agizy, F.R. Mansour, Ultrasound-assisted dispersive liquid–liquid microextraction for determination of three gliflozins in human plasma by HPLC/DAD, J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1136 (2020) 121932. https://doi.org/10.1016/j.jchromb.2019.121932.
[15] C.M. Monzón, C.M. Teglia, M.R. Delfino, H.C. Goicoechea, Chemometric optimization and validation of a novel dispersive liquid-liquid microextraction-HPLC method for gliclazide, glibenclamide and glimepiride quantitation in serum samples, Microchem. J. 127 (2016) 113–119. https://doi.org/10.1016/j.microc.2016.02.011.
[16] A. Alshishani, A. Makahleh, H.F. Yap, E.A. Gubartallah, S.M. Salhimi, B. Saad, Ion-pair vortex assisted liquid-liquid microextraction with back extraction coupled with high performance liquid chromatography-UV for the determination of metformin in plasma, Talanta. 161 (2016) 398–404. https://doi.org/10.1016/j.talanta.2016.08.067.
[17] H. Sereshti, E. Beyrak-Abadi, M. Esmaeili Bidhendi, I. Ahmad, S. Shahabuddin, H. Rashidi Nodeh, N. Sridewi, W.N. Wan Ibrahim, Sulfide-Doped Magnetic Carbon Nanotubes Developed as Adsorbent for Uptake of Tetracycline and Cefixime from Wastewater, Nanomaterials. 12 (2022). https://doi.org/10.3390/nano12203576.
[18] M. Nemati, M. Tuzen, M.A. Farazajdeh, S. Kaya, M.R. Afshar Mogaddam, Development of dispersive solid-liquid extraction method based on organic polymers followed by deep eutectic solvents elution; application in extraction of some pesticides from milk samples prior to their determination by HPLC-MS/MS, Anal. Chim. Acta. 1199 (2022). https://doi.org/10.1016/j.aca.2022.339570.
[19] J. de M. Campêlo, T.B. Rodrigues, J.L. Costa, J.M. Santos, Optimization of QuEChERS extraction for detection and quantification of 20 antidepressants in postmortem blood samples by LC-MS/MS, Forensic Sci. Int. 319 (2021) 110660. https://doi.org/10.1016/J.FORSCIINT.2020.110660.
[20] J. Werner, T. Grześkowiak, A. Zgoła-Grześkowiak, A polydimethylsiloxane/deep eutectic solvent sol-gel thin film sorbent and its application to solid-phase microextraction of parabens, Anal. Chim. Acta. 1202 (2022). https://doi.org/10.1016/j.aca.2022.339666.
[21] O. Ozalp, Z.P. Gumus, M. Soylak, MIL-101(Cr) metal–organic frameworks based on deep eutectic solvent (ChCl: Urea) for solid phase extraction of imidacloprid in tea infusions and water samples, J. Mol. Liq. 378 (2023) 121589. https://doi.org/10.1016/j.molliq.2023.121589.
[22] P. Demmelmayer, L. Steiner, H. Weber, M. Kienberger, Thymol-menthol-based deep eutectic solvent as a modifier in reactive liquid–liquid extraction of carboxylic acids from pretreated sweet sorghum silage press juice, Sep. Purif. Technol. 310 (2023) 123060. https://doi.org/10.1016/J.SEPPUR.2022.123060.
[23] M.S. Jagirani, M. Soylak, Deep eutectic solvents-based adsorbents in environmental analysis, TrAC - Trends Anal. Chem. 157 (2022) 116762. https://doi.org/10.1016/j.trac.2022.116762.
[24] T. Hložek, T. Bosáková, Z. Bosáková, P. Tůma, Hydrophobic eutectic solvents for endocrine disruptors purification from water: Natural and synthetic estrogens study, Sep. Purif. Technol. 303 (2022). https://doi.org/10.1016/j.seppur.2022.122310.
[25] N. Fu, L. Li, K. Liu, C.K. Kim, J. Li, T. Zhu, J. Li, B. Tang, A choline chloride-acrylic acid deep eutectic solvent polymer based on Fe3O4 particles and MoS2 sheets (poly(ChCl-AA DES)@Fe3O4@MoS2) with specific recognition and good antibacterial properties for β-lactoglobulin
https://chemistry.bcnf.ir Page 25
in milk, Talanta. 197 (2019) 567–577. https://doi.org/10.1016/j.talanta.2019.01.072.
[26] L. Li, K. Liu, H. Xing, X. Li, Q. Zhang, D. Han, H. He, H. Yan, B. Tang, Deep eutectic solvents functionalized polymers for easily and efficiently promoting biocatalysis, J. Catal. 374 (2019) 306–319. https://doi.org/10.1016/j.jcat.2019.05.006.
[27] F. Jamshidi, N. Nouri, H. Sereshti, M.H. Shojaee Aliabadi, Synthesis of magnetic poly (acrylic acid-menthol deep eutectic solvent) hydrogel: Application for extraction of pesticides, J. Mol. Liq. 318 (2020) 114073. https://doi.org/10.1016/j.molliq.2020.114073.
[28] S.M. Rahman, S.B. Mohd Said, B. Subramanian, B.D. Long, M.A. Kareem, N. Soin, Synthesis and Characterization of Polymer Electrolyte Using Deep Eutectic Solvents and Electrospun Poly(vinyl alcohol) Membrane, Ind. Eng. Chem. Res. 55 (2016) 8341–8348. https://doi.org/10.1021/acs.iecr.6b01754.
[29] H. Sereshti, Z. Mohammadi, S. Soltani, H. Najarzadekan, A green miniaturized QuEChERS based on an electrospun nanofibrous polymeric deep eutectic solvent coupled to gas chromatography-mass spectrometry for analysis of multiclass pesticide residues in cereal flour samples, J. Mol. Liq. 364 (2022) 120077. https://doi.org/10.1016/J.MOLLIQ.2022.120077.
[30] M. Taghizadeh, A. Taghizadeh, V. Vatanpour, M.R. Ganjali, M.R. Saeb, Deep eutectic solvents in membrane science and technology: Fundamental, preparation, application, and future perspective, Sep. Purif. Technol. 258 (2021) 118015. https://doi.org/10.1016/j.seppur.2020.118015.
[31] S. Xie, B. Xu, L. Yuan, Y. Zhao, N. Ma, Y. Wang, D. Liu, A. Xiang, Y. Ouyang, H. Tian, Electrospun Hydrophobic Nanofiber Films from Biodegradable Zein and Curcumin with Improved Tensile Strength for Air Filtration, J. Polym. Environ. 31 (2023) 287–296. https://doi.org/10.1007/S10924-022-02564-5.
[32] N. Razavi, Z. Es’haghi, Curcumin loaded magnetic graphene oxide solid-phase extraction for the determination of parabens in toothpaste and mouthwash coupled with high performance liquid chromatography, Microchem. J. 148 (2019) 616–625. https://doi.org/10.1016/j.microc.2019.04.057.
[33] J.G. de Oliveira Filho, M.R.V. Bertolo, M.Á.V. Rodrigues, C.A. Marangon, G. da C. Silva, F.C.A. Odoni, M.B. Egea, Curcumin: A multifunctional molecule for the development of smart and active biodegradable polymer-based films, Trends Food Sci. Technol. 118 (2021) 840–849. https://doi.org/10.1016/J.TIFS.2021.11.005.
[34] A. Scroccarello, F. Della Pelle, M. Del Carlo, D. Compagnone, Optical plasmonic sensing based on nanomaterials integrated in solid supports. A critical review, Anal. Chim. Acta. 1237 (2023) 340594. https://doi.org/10.1016/j.aca.2022.340594.
[35] Y. Li, J. Zhu, H. Cheng, G. Li, H. Cho, M. Jiang, Q. Gao, X. Zhang, Developments of Advanced Electrospinning Techniques: A Critical Review, Adv. Mater. Technol. 6 (2021). https://doi.org/10.1002/ADMT.202100410.
[36] S.S. Nasrollahi, Y. Yamini, A. Mani-Varnosfaderani, A green approach for in-tube solid phase microextraction of acidic red dyes from juice samples using chitosan/poly vinyl alcohol electrospun nanofibers, J. Food Compos. Anal. 106 (2022) 104339. https://doi.org/10.1016/J.JFCA.2021.104339.
[37] B. Arabkhani, N. Goudarzi, G. Bagherian, M.A. Chamjangali, Application of Tandem Dispersive Liquid-Liquid Microextraction as an Efficient Method for Preconcentration of Two Antidepressant Drugs in Real Samples Combined with High Performance Liquid Chromatography, J. Chromatogr. Sci. 60 (2022) 96–103. https://doi.org/10.1093/CHROMSCI/BMAB038.
[38] S. Chinthanippula, B. Chowdhury, Pharmacodynamic And Pharmacokinetic Interaction Of Didymocarpus Pedicellata With Gliclazide In Normal And Diabetic Rats, J. Pharm. Negat. Results. 14 (2023) 1601–1609. https://doi.org/10.47750/PNR.2023.14.S02.195.
[39] B.P. Kaltschmidt, I. Ennen, J.F.W. Greiner, R. Dietsch, A. Patel, B. Kaltschmidt, C. Kaltschmidt, A. Hütten, Preparation of terpenoid-invasomes with selective activity against S. aureus and characterization by cryo transmission electron microscopy, Biomedicines. 8 (2020).
https://chemistry.bcnf.ir Page 26
https://doi.org/10.3390/BIOMEDICINES8050105.
[40] D.J.G.P. Van Osch, C.H.J.T. Dietz, J. Van Spronsen, M.C. Kroon, F. Gallucci, M. Van Sint Annaland, R. Tuinier, A Search for Natural Hydrophobic Deep Eutectic Solvents Based on Natural Components, ACS Sustain. Chem. Eng. 7 (2019) 2933–2942. https://doi.org/10.1021/acssuschemeng.8b03520.
[41] T. Raja Sekharan, R. Margret Chandira, S.C. Rajesh, S. Tamilvanan, C.T. Vijayakumar, B.S. Venkateswarlu, pH, Viscosity of Hydrophobic Based Natural Deep Eutectic Solvents and the Effect of Curcumin Solubility in it, Biointerface Res. Appl. Chem. 11 (2021) 14620–14633. https://doi.org/10.33263/BRIAC116.1462014633.
[42] A. Asiri, S. Saidin, M.H. Sani, R.H. Al-Ashwal, Epidermal and fibroblast growth factors incorporated polyvinyl alcohol electrospun nanofibers as biological dressing scaffold, Sci. Rep. 11 (2021). https://doi.org/10.1038/S41598-021-85149-X.
[43] S. Mitra, T. Mateti, S. Ramakrishna, A. Laha, A Review on Curcumin-Loaded Electrospun Nanofibers and their Application in Modern Medicine, JOM 2022 749. 74 (2022) 3392–3407. https://doi.org/10.1007/S11837-022-05180-9.
[44] M. Shirani, A. Aslani, F. Ansari, E. Parandi, H.R. Nodeh, E. Jahanmard, Zirconium oxide/titanium oxide nanorod decorated nickel foam as an efficient sorbent in syringe filter based solid-phase extraction of pesticides in some vegetables, Microchem. J. 189 (2023) 108507. https://doi.org/10.1016/j.microc.2023.108507.
[45] M.A. Vargas-Muñoz, V. Cerdà, G. Turnes Palomino, E. Palacio, Determination of long-chain fatty acids in anaerobic digester supernatant and olive mill wastewater exploiting an in-syringe dispersive liquid-liquid microextraction and derivatization-free GC-MS method, Anal. Bioanal. Chem. 413 (2021) 3833–3845. https://doi.org/10.1007/s00216-021-03338-z.
[46] Y. Zheng, F. Yao, F. Chen, Curcumin-loaded electrospun peanut protein isolate/ poly-l-lactic acid nanofibre membranes: Preparation and characterisation and release behaviour, LWT. 169 (2022) 113978. https://doi.org/10.1016/J.LWT.2022.113978.
[47] A. Rojas, E. Velásquez, L. Garrido, M.J. Galotto, C. López de Dicastillo, Design of active electrospun mats with single and core-shell structures to achieve different curcumin release kinetics, J. Food Eng. 273 (2020) 109900. https://doi.org/10.1016/J.JFOODENG.2019.109900.
[48] C.Y. Foong, M.F. Mohd Zulkifli, M.D.H. Wirzal, M.A. Bustam, L.H.M. Nor, M.S. Saad, N.S. Abd Halim, COSMO-RS prediction and experimental investigation of amino acid ionic liquid-based deep eutectic solvents for copper removal, J. Mol. Liq. 333 (2021). https://doi.org/10.1016/j.molliq.2021.115884.
[49] G. Bayramoglu, S. Burcu Angi, I. Acikgoz-Erkaya, M. Yakup Arica, Preparation of effective green sorbents using O. Princeps alga biomass with different composition of amine groups: Comparison to adsorption performances for removal of a model acid dye, J. Mol. Liq. 347 (2022) 118375. https://doi.org/10.1016/J.MOLLIQ.2021.118375.
[50] M.R. Afshar Mogaddam, A. Jouyban, M. Nemati, M.A. Farajzadeh, E. Marzi Khosrowshahi, Application of curcumin as a green and new sorbent in deep eutectic solvent-based dispersive micro-solid phase extraction of several polycyclic aromatic hydrocarbons from honey samples prior to gas chromatography–mass spectrometry determination, J. Sep. Sci. 44 (2021) 4037–4047. https://doi.org/10.1002/jssc.202100354.
[51] W.-H. Lee, C.-Y. Loo, M. Bebawy, F. Luk, R. Mason, R. Rohanizadeh, Curcumin and its Derivatives: Their Application in Neuropharmacology and Neuroscience in the 21st Century, Curr. Neuropharmacol. 11 (2013) 338–378. https://doi.org/10.2174/1570159X11311040002.
[52] Z. Asghari, H. Sereshti, S. Soltani, H. Rashidi Nodeh, M. Hossein Shojaee AliAbadi, Alginate aerogel beads doped with a polymeric deep eutectic solvent for green solid-phase microextraction of 5-hydroxymethylfurfural in coffee samples, Microchem. J. 181 (2022) 107729. https://doi.org/10.1016/J.MICROC.2022.107729.
https://chemistry.bcnf.ir Page 27
[53] A. Karrat, A. Amine, Solid-phase extraction combined with a spectrophotometric method for determination of Bisphenol-A in water samples using magnetic molecularly imprinted polymer, Microchem. J. 168 (2021) 106496. https://doi.org/10.1016/j.microc.2021.106496.
[54] G. Li, M. Zhao, L. Zhao, The drug interaction potential of berberine hydrochloride when co-administered with simvastatin, fenofibrate, gemfibrozil, metformin, glimepiride, nateglinide, pioglitazone and sitagliptin in beagles, Arab. J. Chem. 15 (2022) 103562. https://doi.org/10.1016/j.arabjc.2021.103562.
[55] R.M. Toudeshki, S. Dadfarnia, A.M. Haji Shabani, Surface molecularly imprinted polymer on magnetic multi-walled carbon nanotubes for selective recognition and preconcentration of metformin in biological fluids prior to its sensitive chemiluminescence determination: Central composite design optimization, Anal. Chim. Acta. 1089 (2019) 78–89. https://doi.org/10.1016/J.ACA.2019.08.070.
[56] S. Hemmati, M.M. Heravi, B. Karmakar, H. Veisi, Green fabrication of reduced graphene oxide decorated with Ag nanoparticles (rGO/Ag NPs) nanocomposite: A reusable catalyst for the degradation of environmental pollutants in aqueous medium, J. Mol. Liq. 319 (2020) 114302. https://doi.org/10.1016/J.MOLLIQ.2020.114302.
[57] J. Płotka-Wasylka, A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index, Talanta. 181 (2018) 204–209. https://doi.org/10.1016/J.TALANTA.2018.01.013.
[58] F. Pena-Pereira, W. Wojnowski, M. Tobiszewski, AGREE - Analytical GREEnness Metric Approach and Software, Anal. Chem.92 (2020) 10076–10082. https://doi.org/10.1021/ACS.ANALCHEM.0C01887.