How Electrostatics Disrupts Gas-Solid Fluidized Bed Operations: A Review

نویسندگان

  • Ghazal Saki Norouzi 1 Chemical Engineering Department, Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah 67144‐14971, Iran. نویسنده
  • Heydar Rezaei School of Chemical Engineering, College of Engineering, University of Tehran, 11155-4563, Tehran, Iran. نویسنده

کلمات کلیدی:

, Triboelectrification, Electrostatics, Hydrodynamics,

چکیده

The dynamic dance of gas and solid particles in fluidized beds creates a hidden storm of electrostatic charges due to frequent collisions. This review dives into the world of these charges, exploring their generation mechanisms, potential trouble they can cause (think particle clumps, wall sheeting, fouling, and even sparks), and how we can keep them under control. By examining the fundamental principles, measurement techniques, and the complex interplay between electrostatics and fluid flow, we aim to spark ideas for future research and innovative solutions to unlock the full potential of fluidized bed reactors.

مراجع

[1] John G. Yates, Paola Lettieri. (2016). Fluidized-Bed Reactors: Processes and Operating Conditions, Volume 26.

[2] D. Kunii, O. Levenspiel. (1991). Fluidization Engineering, Buttenworth-Heinemann, Newton, USA.

[3] [A. Chen, H. Bi, J.R. Grace. (2006). Effects of probe numbers and arrangement on the measurement of charge distributions around a rising bubble in a two-dimensional fluidized bed. Chem. Eng. Sci., vol. 61, p. 6499-6510.

[4] G. Hendrickson. (2006). Electrostatics and gas phase fluidized bed polymerization reactor wall sheeting. Chem. Eng. Sci., vol. 61, p. 1041–64.

[5] M. Manafi, R. Zarghami, N. Mostoufi (2021). Charge transfer and bipolar charging of particles in a bubbling fluidized bed. Particuology, vo. 54, p.109-115.

[6] Joao B. P. Soares and Timothy F. L. McKenna. (2012). Polyolefin Reaction Engineering. ISBN: 978-3-527-31710-3.

[7] Burdett I D, Eisinger RS, Cai P, Lee KH. (2001). Gas-phase fluidization technology for production of polyolefins. In: Fluidization X. United Engineering Foundation, New York, p. 39–52.

[8] J. W. Lee, S.W. Kang, B. S. Chun, S. Jae. (2020). Olefin polymerization method using antistatic agent for metallocene olefin polymerization process. European Patent EP4019555A1.

[9] J. Wang, Y. Xu, W. Li, Y. Yang, F. Wang. (2009). Electrostatic potentials in gas-solid fluidized beds influenced by the injection of charge inducing agents. Electrostat, vol. 7, p. 815–826.

[10] Q. Zhao, X. Bi, P. Zhang, C. Liang. (2023). A study of charging characteristics of binary mixture of polyolefin particles by using horizontal airflow to separate large and small particles. Powder Technology, vol. 420, 118399.

[11] J. Lu, J. Yang, J. Qiao. (2023). Enhancement of electrostatic suppression in bubbling fluidized bed through carbon fiber addition. Powder Technology, vol. 428, 118797.

[12] R.Jaiswal, N.C.I.S. Furuvik, R.K. Thapa. (2020). Method of identifying an operating regime in a bubbling fluidized bed gasification reactor. Int. J. Energy Prod. Manag, vol. 5, p.24–34.

[13] W. C. Yang. (2003). Other nonconventional fluidized beds. In Handbook of Fluidizfition and Fluid-Particle Systems; Siemens Westinghouse Power Corporation: Pittsburgh, PA, USA.

[14] R. Cocco, J.W. Chew. (2023). 50 years of Geldart classification. Powder Technology, vol. 428, 118861.

[15] F. Johnsson, R. Zijerveld, J. Schouten, C.V.D. Bleek. (2000). Characterization of fluidization regimes by time-series analysis of pressure fluctuations. Int. J. Multiph. Flow, vol. 26, p. 663–715.

[16] R. Jaiswal, B. M. E. Moldestad, M.S. Eikeland, H.K. Nielsen, R.K. Thapa. (2022). Image Processing and Measurement of the Bubble Properties in a Bubbling Fluidized Bed Reactor. Energies, vol. 15, 7828.

[17] G. Rovero, M. Curti, G. Cavaglià. (2012). Optimization of Spouted Bed Scale-Up by Square-Based Multiple Unit Design. Advances in Chemical Engineering. DOI: 10.5772/33395

[18] D. Geldart. (1973). Types of gas fluidization. Powder Tecnology, vol. 7, p.285–292.

[19] J. Sun, Y. Yan. (2016). Non-intrusive measurement and hydrodynamics characterization of gas–solid fluidized beds: a review. Measurement Science and Technology, vol. 27.

[20] W. Fang, W. Jingdai, Y. Yongrong. (2008). Distribution of electrostatic potential in a gas–solid fluidized bed and measurement of bed level. Industrial & Engineering Chemistry Research, vol. 47, p. 9517–9526.

[21] F.S. Ali, M.A. Ali, R.A. Ali, I.I. Inculet. (1998). Minority charge separation in falling particles with bipolar charge. Journal of Electrostatics, vol. 45, p. 139–155.

[22] Q. Shi, Q. Zhang, J. Wang. (2017). Simultaneous measurement of electrostatic charge and its effect on particle motions by electrostatic sensors array in gas-solid fluidized beds. Powder Technology, vol. 312, p. 29-37.

[23] Y. Zhao, M. Liu, J. Yao. (2023). Electrostatics of granules and granular flows: A review. Advanced Powder Technology, vol. 34, 103895.

[24] F. Fotovat, X.T. Bi, J.R. Gracev. (2017). Electrostatics in Gas-Solid Fluidized Beds: A Review, Chemical Engineering Science, p. 303-334.

[25] P.Mehrani, H.T. Bi, J.R. Grace. (2004). Electrostatic charge generation in gas–solid fluidized beds. Recent Developments in Applied Electrostatics, p. 25-28.

[26] A. Sowinski, F. Salama, P. Mehrani. (2009). New technique for electrostatic charge measurement in gas–solid fluidized beds. Electrostatics, vol. 67, p. 568–573.

[27] A. Sowinski, L. Miller, P. Mehrani. (2010). Investigation of electrostatic charge distribution in gas–solid fluidized beds. Chemical Engineering Science, vol. 65, p. 2771–2781.

[28] K. S. Choi, K. T. Moon, J. H. Chung, X. Bi, J. R. Grace. (2011). Electrostatic hazards of polypropylene powders in the fluidized bed reactor. International Conference on Industrial Engineering and Engineering Management, p.995-999.

[29] X.T. Bi. (2011). Electrostatic phenomena in fluidization systems: Current status of understanding and future research needs, in: Knowlton. 10th Circulating Fluidized Bed and Fluidization Technology. ECI press, p. 41–57.

[30] D. Song, F. Salama, J. Matta, P. Mehrani. (2016). Implementation of Faraday cup electrostatic charge measurement technique in high-pressure gas–solid fluidized beds at pilot-scale. Powder Technology, vol. 290, p. 21-26.

[31] H. Wang, F. Fotovat, X.T Bi, J.R. Grace. (2019). Tribo-charging of binary mixtures composed of coarse and fine particles in gas–solid pipe flow. Particuology, vol. 43, p. 101-109.

[32] D. Song, P. Mehrani. (2017). Mechanism of particle build-up on gas-solid fluidization column wall due to electrostatic charge generation. Powder Technology, vol. 316, p. 166-170.

[33] A. Sowinski, A. Mayne, B. Javed, P. Mehrani, (2011). Comparison of the effect of grounding the column wall in gas- solid fluidized beds on electrostatic charge generation. J. Phys. Conf. Ser. 301.

[34] F. Salama, A. Sowinski, K. Atieh, K, P. Mehrani. (2013). Investigation of electrostatic charge distribution within the reactor wall fouling and bulk regions of a gas-solid fluidized bed. Electrostatics, vol. 71, p. 21– 27.

[35] Q. Zhang, K. Dong, Y. Zhou, Z. Huang, Z. Liao, F. Wang. (2016). A comparative study of electrostatic current and pressure signals in a MSFC gas-solid fluidized bed. Powder Technology, vol. 287, 292–300.

[36] A. Sowinski, A. Mayne, P. Mehrani. (2012). Effect of fluidizing particle size on electrostatic charge generation and reactor wall fouling in gas-solid fluidized beds. Chemical Engineering Science, vol. 71, p.552–563.

[37] A. Sowinski, L. Miller, P. Mehrani. (2010). Investigation of electrostatic charge distribution in gas-solid fluidized beds Chemical Engineering Science, vol. 65, p. 2771–2781.

[38] J. He, S. Huang, H. Chen, L. Zhu, B. Yang. (2023). Recent advances in the intensification of triboelectric separation and its application in resource recovery: A review. Chemical Engineering and Processing, vol. 45, 109308.

[39] H. Zhao, G.S.P. Castle, A.G. Bailey. (2003). Bipolar charging of poly-disperse polymer powders in fluidized beds. IEEE Transactions on Industry Applications, vol. 39(3), p. 612 - 618.

[40] P. Mehrani, H. T. Bi, J. R. Grace. (2007), Electrostatic behavior of different fines added to a Faraday cup fluidized bed. Electrostatics, vol. 65, p. 1–10.

[41] Alsmari, T.A., 2014. Effect of operating conditions and particle properties on electrostatics and entrainment in gas-solid fluidized beds, Ph.D. dissertation. University of British Columbia, Vancouver, Canada.

[42] F. Fotovat, J.R. Grace, X.T. Bi. (2016). Particle entrainment from gas-solid fluidized beds: conductive vs. dielectric fines. AIChE vol. 63, p. 1194–1202.

[43] P.Mehrani , M. Murtomaa , D.J. Lacks. (2017). An overview of advances in understanding electrostatic charge buildup in gas-solid fluidized beds. Electrostatics, vol. 87, p. 64-78.

[44] F. Chowdhury, M. Ray, A. Sowinski, P. Mehrani, A. Passalacqua. (2021). A review on modeling approaches for the electrostatic charging of particles. Powder Technology, vol. 389, p. 104-118.

[45] J Revel, Cendrine Gatumel, John A. Dodds, J Taillet. (2003). Generation of static electricity during fluidisation of polyethylene and its elimination by air ionisation. Powder Technology, vol. 135, p. 192-200.

[46] A. Chen, A., H.T. Bi, J.R. Grace. (2006). Measurement of charge distribution around a rising bubble in a 2-D fluidized bed. AIChE J. vol. 52, p. 174–184.

[47] A. Chen, A., H.T. Bi, J.R. Grace. (2007). Charge distribution around a rising bubble in a two-dimensional fluidized bed by signal reconstruction. Powder Technology, vol. 177, p. 113–124.

[48] K. Dong, Q. Zhang, Z. Huang, Z. Liao, J. Wang, Y. Yang. (2015). Experimental investigation of electrostatic effect on bubble behaviors in gas-solid fluidized bed. AIChE Journal, vol. 61[4], p. 1160–1171.

[49] J.R. Coombes, Y. Yan. (2015). Experimental investigations into the flow characteristics of pneumatically conveyed biomass particles using an electrostatic sensor array. Fuel vol. 151, p. 11–20.

[50] W. Zhang, Y. Yang, J. Wang. (2015). Measurement of flow parameters in a bubbling fluidized bed using electrostatic sensor arrays. Instrumentation and Measurement Technology Conference, p. 1573–1577.

[51] W.O. Moughrabiah, J.R. Grace, X.T. Bi. (2009). Effects of pressure, temperature, and gas velocity on electrostatics in gas–solid fluidized beds. Industrial & Engineering Chemistry Research, vol. 48, p. 320–325.

[52] Z.L. Liu, X.T. Bi, J.R. Grace. (2010). Electrostatic charging behavior of dielectric particles in a pressurized gas–solid fluidized bed. Electrostatics, vol. 68, p. 321–327.

[53] W.O. Moughrabiah, J.R. Grace, X.T. Bi. (2012). Electrostatics in gas–solid fluidized beds for different particle properties. Chemical Engineering Science, vol. 75, p. 198–208.

[54] C. He, J.R. Grace, X.T. Bi. (2015). Simultaneous measurements of particle charge density and bubble properties in gas–solid fluidized beds by dual-tip electrostatic probes. Chemical Engineering Science, vol.123, p. 11–21.

[55] C. He, J.R. Grace, X.T. Bi. (2016). Comparison of conventional and novel probes for measuring electrostatics and hydrodynamics during fluidization of polyethylene. Electrostatics, vol. 79, p. 7–15.

[56] S. Matsusaka, H. Maruyama, T. Matsuyama, M. Ghadiri. (2010). Triboelectric charging of powders: A review. Chemical Engineering Science, vol. 65, p. 5781–5807.

[57] B. Demirbas, J. Nijenhuis, C.U. Yurteri, J.R. Ommen. (2008). Towards monitoring electrostatics in gas–solid fluidized beds. Canadian Journal of Chemical Engineering, vol. 86, p. 493–505.

[58] D. Gidaspow, Y. Seo, B. Ettehadieh. (1983). Hydrodynamics of fluidization: experimental and theoretical bubble sizes in a two-dimensional bed with jet. Chem. Eng. Commun., vol. 22, p. 253–272.

[59] D.J. Lacks, R.M. Sankaran. (2011). Contact electrification of insulating materials. J. Phys. D. Appl. Phys., vol. 44, 453001.

[60] L. S. McCarty, G. M. Whitesides. (2008). Electrostatic charging due to separation of ions at interfaces: Contact Electrification of Ionic Electrets. Chem., Int. Ed, vol. 47, p. 2188−2207.

[61] X. Zhang, L. Chen, Y. Jiang, W. Lim, S. Soh. (2019). Rationalizing the Triboelectric Series of Polymers. Chemistry of Materials, vol. 31, p. 1473–1478.

[62] S. Pan, Z. Zhang. (2019). Fundamental theories and basic principles of triboelectric effect: A review. Friction, vol. 7, p. 2–17.

[63] N. Li, L. Ma, X. Xu, J. Luo. (2020). Charge transfer dynamics in contact electrification of dielectrics investigated by triboluminescence. Journal of Luminescence, vol. 227, 117531.

[64] M.W. Williams. (2012). Triboelectric charging of insulating polymers– some new perspectives. AIP Advances, vol.2, 010701.

[65] M.W. Williams. (2012). Triboelectric charging of insulators – mass transfer versus electrons/ions. Electrostatics, vol. 70, p. 233–234.

[66] U.G. Musa, S. Doruk Cezan, B. Baytekin, H. T. Baytekin. (2018). The Charging Events in Contact-Separation Electrification. Scientific Reports, vol. 8, 2472.

[67] A. Wang, D. Gil, M. Holonga, D.J. Lacks. (2017). Dependence of triboelectric charging behavior on material microstructure. Phys Rev Mater, vol. 1, 035605.

[68] Y.G. Chung, D.J. Lacks. (2012). Atomic mobility in strained glassy polymers: The role of fold catastrophes on the potential energy surface. Polymer Science Part B, vol. 50, p. 1733–1739.

[69] Y.J. Kim, J. Lee, S. Park, C. Park, C. Park, H. Choi. (2017). Effect of the relative permittivity of oxides on the performance of triboelectric nanogenerators. RSC Advances, 28.

[70] Z. L. Wang, L. Lin, J. Chen, S. Niu, Y. Zi. (2016). Triboelectric Nanogenerators, Springer, Switzerland. ISBN: 978-3-319-40038-9.

[71] F. Chowdhury, M. Ray, A. Passalacqua, P. Mehrani, A. Sowinski. (2021). Electrostatic charging due to individual particle-particle collisions. Powder Technology, vol. 381, p. 352-365.

[72] M. Taghavivand, P. Mehrani, A. Sowinski. (2021). Triboelectric effects of a pneumatically injected silica catalyst support on polyethylene fluidized bed wall fouling. Powder Technology, vol. 385, p. 287-298.

[73] J. Hou, X. Liu, M. H. Rahman, H. Li, S. Sundaresan. (2023). Effect of gas properties and wall materials on particle charging in gas–solid fluidized beds. Canadian Journal of Chemical Engineering, vol. 101(1), p. 244-255.

[74] P. Mehrani, H.T. Bi, J. R. Grace. (2007). Bench-scale tests to determine mechanisms of charge generation due to particle–particle and particle–wall contact in binary systems of fine and coarse particles. Powder Technology, vol. 173, p. 73-81.

[75] F. Fotovat, X.T. Bi, J.R. Grace. (2018). A perspective on electrostatics in gas-solid fluidized beds: Challenges and future research needs. Powder Technology, vol. 329, p. 65-75.

[76] H.T. Bi. (2005). Electrostatic phenomena in gas-solids fluidized beds. China Particuology, vol. 3, p. 395–399.

[77] Q. Zhou, L. Li, Xi. Bi, G. Zhang, Z. Cao, H. Meng, Q. Lan, C. Liang, X. Chen, J. Ma. (2022). Electrostatic elimination of charged particles by DC-type bipolar electrostatic eliminator. Powder Technology, vol. 408, 117774.

[78] F. Salama, A. Sowinski, K. Atieh, P. Mehrani. (2013). Investigation of electrostatic charge distribution within the reactor wall fouling and bulk regions of a gas-solid fluidized bed. Electrostatics, vol. 71, p. 21– 27.

[79] C.F. Gallo, W.L. Lama. (1976). Classical electrostatic description of the work function and ionization energy of insulators. IEEE Trans. Ind. Appl, p. 7–11.

[80] A. Vitale, A. Alessandro, I. Stefano, C. Erwin, H. Arda. (2023). Devolatilization of Polypropylene Particles in Fluidized Bed. Energies, vol. 16, 6324.

[81] W. Fang, W. Jingdai, Y. Yongrong. (2008). Distribution of electrostatic potential in a gas-solid fluidized bed and measurement of bed level. Ind. Eng. Chem. Res., vol. 47, p. 9517–9526.

[82] K. Rahman, C. Campbell. (2002). Particle pressures generated around bubbles in gas fluidized beds. J. Fluid Mech., vol. 455, p. 103–127.

[83] A. Giffin, P. Mehrani. (2010). Comparison of influence of fluidization time on electrostatic charge buildup in the bubbling vs. slugging flow regimes in gas-solid fluidized beds. Electrostatics, vol. 68, p. 492–502.

[84] P. Tiyapiboonchaiya, D. Gidaspow, S. Damronglerd. (2012). Hydrodynamics of electrostatic charge in polypropylene fluidized beds. Ind. Eng. Chem. Res., vol.51, p. 8661–8668.

[85] J. Ji, H. Ji, L. Zhang, X. Zhao, X. Bai, X. Fan, F. Zhang, R.S. Ruoff. (2013). Graphene-encapsulated Si on ultrathin-graphite foam as anode for high-capacity lithium-ion batteries. Adv. Mater., vol. 25, p. 4673–4677.

[86] Z. Chen, J.W.F. To, C. Wang, Z. Lu, N. Liu, A. Chortos, L. Pan, F. Wei, Y. Cui, Z. Bao. (2014). A three-dimensionally interconnected carbon nanotube–conducting polymer hydrogel network for high performance flexible battery electrodes. Adv. Energy Mater., vol. 4, 1400207.

[87] C. Pei, C.Y. Wu, D. England, S. Byard, H. Berchtold, M. Adams. (2015). DEM-CFD modeling of particle systems with long-range electrostatic interactions. AIChE J., vol. 61, p. 1792–1803.

[88] T.A. Alsmari, J.R. Grace, X. T. Bi. (2016). Effects of particle properties on entrainment and electrostatics in gas–solid fluidized beds. Powder Technology, vol. 290, p. 2-10.

[89] D.J. Lacks, R.M. Sankaran. (2016). Triboelectric charging in single-component particle systems. Part. Sci. Technol., vol. 34, p. 55–62.

[90] A. Repoulias, I. Logothetis, D. Matsouka. (2023). Contact Area of Electrification Materials Relating to Triboelectric Generators: A Comparative Study. Electronic Materials Letters.

[91] P. Jiang, H. Bi, S. Liang, L.S. Fan. (1994). Hydrodynamic behavior of circulating fluidized bed with polymeric particles. AIChE J., vol. 40, p. 193–206.

[92] J. Revel, C. Gatumel, J.A. Dodds, J. Taillet. (2003). Generation of static electricity during fluidization of polyethylene and its elimination by air ionisation. Powder Technology, vol. 135–136, p. 192–200.

[93] A. Wolny, W. Kaźmierczak. (1993). The influence of static electrification on dynamics and rheology of fluidized bed. Chemical Engineering Science, vol. 48, p. 3529–3534.

[94] Z. Tan, C. Liang, J. Li, S. Zhang. (2018). The effect of electrostatics on single bubble in fluidized bed and its mechanism analysis. Powder Technology, vol. 325, p. 545-556.

[95] A.S. Issangya, R.A. Cocco, S.R. Karri, T.M. Knowlton, J.W. Chew. (2022). Bed density and bubble void fraction variation in a fluidized bed stripper. Chemical Engineering Science, vol. 260, 117837.

[96] C.E. Agu, L.A. Tokheim, M. Eikeland, B.M. Moldestad. (2017). Determination of onset of bubbling and slugging in a fluidized bed using a dual-plane electrical capacitance tomography system. Chem. Eng. J., vol. 328, p. 997–1008.

[97] M. I. Nimvari, R. Zarghami, D. Rashtchian. (2020). Experimental investigation of bubble behavior in gas-solid fluidized bed. Advanced Powder Technology, vol. 31, p. 2680-2688.

[98] J. Delgado, M.P. Aznar, J. Corella. (1997). Biomass gasification with steam in fluidized bed: effectiveness of CaO, MgO, and CaO-MgO for hot raw gas cleaning. Ind. Eng. Chem. Res., vol. 36, p. 1535–1543.

[99] J. van der Schaaf, J.C. Schouten, F. Johnsson, C.M. Van den Bleek. (2002). Non-intrusive determination of bubble and slug length scales in fluidized beds by decomposition of the power spectral density of pressure time series. Int. J. Multiph. Flow, vol. 28, p. 865–880.

[100] Z. Peng, E. Doroodchi, B. Moghtaderi. (2020). Heat transfer modelling in Discrete Element Method (DEM)-based simulations of thermal processes: Theory and model development. Progress in Energy and Combustion Science, vol. 79, 100847.

[101] J.R. van Ommen, S. Sasic, J. Van der Schaaf, S. Gheorghiu, F. Johnsson, M.O. Coppens, Time-series analysis of pressure fluctuations in gas–solid fluidized beds–A review. (2011). Int. J. Multiph. Flow, vol. 37, p. 403–428.

[102] C. Vial, E. Camarasa, S. Poncin, G. Wild, N. Midoux, J. Bouillard. (2000). Study of hydrodynamic behaviour in bubble columns and external loop airlift reactors through analysis of pressure fluctuations. Chem. Eng. Sci., vol. 55, p. 2957– 2973.

[103] O. Winter. (1968). Density and pressure fluctuations in gas fluidized beds. AIChE J., vol. 14, p. 426–434.

[104] H.T. Bi, J.R. Grace, J. Zhu. (1995). Propagation of pressure waves and forced oscillations in gas-solid fluidized beds and their influence on diagnostics of local hydrodynamics. Powder Technology, vol. 82, p. 239–253.

[105] J. van der Schaaf, J.C. Schouten, C.M. Van den Bleek. (1998). Origin, propagation and attenuation of pressure waves in gas—solid fluidized beds.Powder Technology, vol. 95, p. 220–233.

[106] D. Musmarra, S. Vaccaro, M. Fillai, L. Massimilla. (1992). Propagation characteristics of pressure disturbances originated by gas jets in fluidized beds. Int. J. Multiph. Flow, vol. 18, p. 965–976.

[107] S. Sasic, B. Leckner, F. Johnsson. (2007). Characterization of fluid dynamics of fluidized beds by analysis of pressure fluctuations. Progress in Energy and Combustion Science, vol.33, p. 453–496.

[108] D. Musmarra, M. Poletto, S. Vaccaro, R. Clift. (1995). Dynamic waves in fluidized beds, Powder Technology, vol. 82, p. 255–268.

[109] H. Bi, A. Chen. (2003). Pressure fluctuations in gas-solids fluidized beds, China Particuology, vol. 1, p. 139–144.

[110] H.T. Bi. (2007). A critical review of the complex pressure fluctuation phenomenon in gas-solids fluidized beds. Chem. Eng. Sci., vol. 62, p. 3473–3493.

[111] C.R. Müller, J.F. Davidson, J.S. Dennis, P.S. Fennell, L.F. Gladden, A.N. Hayhurst, M.D. Mantle, A.C. Rees, A.J. Sederman. (2007). Oscillations in gas-fluidized beds: Ultrafast magnetic resonance imaging and pressure sensor measurements. Powder Technology, vol. 177, p. 87–98.

[112] C.M. Boyce, J.F. Davidson, D.J. Holland, S.A. Scott, J.S. Dennis. (2014). The origin of pressure oscillations in slugging fluidized beds: Comparison of experimental results from magnetic resonance imaging with a discrete element model. Chem. Eng. Sci., vol. 116, p. 611–622.

[113] L. Yao, H.T. Bi, A. Park. (2002). Characterization of electrostatic charges in freely bubbling fluidized beds with dielectric particles. Electrostatics, vol. 56, p. 183–197.

[114] F. Jalalinejad, X.T. Bi, J.R. Grace. (2012). Effect of electrostatic charges on single bubble in gas-solid fluidized beds. Int. J. Multiph. Flow, vol. 44, p. 15–28.

[115] M.A. Hassani, R. Zarghami, H.R. Norouzi, N. Mostouf. (2013). Numerical investigation of effect of electrostatic forces on the hydrodynamics of gas–solid fluidized beds. Powder Technology, vol. 246, p. 16-25.

[116] F. Jalalinejad, X.T. Bi , J.R. Grace. (2015). Effect of electrostatics on freely-bubbling beds of mono-sized particles. International Journal of Multiphase Flow, vol. 70, p. 104-112.

[117] F. Jalalinejad, X.T. Bi, J.R. Grace. (2016). Comparison of theory with experiment for single bubbles in charged fluidized particles. Powder Technology, vol. 290, p. 27-32.

[118] Ma. Manafi, R. Zarghami, N. Mostoufi. (2019). Effect of electrostatic charge of particles on hydrodynamics of gas-solid fluidized beds. Advanced Powder Technology, vol. 30(4), p. 815-828.

[119] M. Manafi, R. Zarghami, N. Mostoufi. (2019). Fluidization of electrically charged particles. Electrostatics, vol. 99, p. 9-18.

[120] J.W. Chew, A. Cahyadi, C.M. Hrenya, Re.Karri, R. Cocco. (2015). Review of entrainment correlations in gas–solid fluidization. Chemical Engineering Journal, vol. 260, p. 152-171.

[121] F. Fotovat, T.A. Alsmari, J.R. Grace, X.T. Bi. (2017). The relationship between fluidized bed electrostatics and entrainment. Powder Technology, vol. 316, p. 157-165.

[122] P. Zhang, C. Liang, Q. Zhou, X. Chen, J. Ma. (2021). Experimental investigation of particle adhesion on the wall due to electrostatic charge in gas-solid fluidized beds. Powder Technology, vol. 387, p. 373-384.

[123] T.A. Alsmari, J.R. Grace, X.T. Bi. (2015). Effects of superficial gas velocity and temperature on entrainment and electrostatics in gas–solid fluidized beds. Chemical Engineering Science, vol. 123, p. 49–56.

[124] J. Guardiola, V. Rojo, G. Ramos. (1996). Influence of particle size, fluidization velocity and relative humidity on fluidized bed electrostatics. Electrostatics, vol. 37, p. 1–20.

[125] A. Park, H. Bi, J.R. Grace. (2002). Reduction of electrostatic charges in gas-solid fluidized beds. Chemical Engineering Science, vol. 57, p. 153–162.

[126] J. Ciborowski, A. Wlodarski. (1962). On electrostatic effects in fluidized beds. Chemical Engineering Science, vol. 17, p. 23– 32.

[127] Y. Cheng, D.Y.J. Lau, G. Guan, C. Fushimi, A. Tsutsumi, C.H. Wang. (2012). Experimental and numerical investigations on the electrostatics generation and transport in the downer reactor of a triple-bed combined circulating fluidized bed. Ind. Eng. Chem. Res., vol. 51, p. 14258–14267.

[128] Y. Cheng, E.W.C. Lim, C.H. Wang, G. Guan, C. Fushimi, M. Ishizuka, A. Tsutsumi. (2012). Electrostatic characteristics in a large-scale triple-bed circulating fluidized bed system for coal gasification. Chem. Eng. Sci., vol. 75, p. 435–444.

[129] V. C. R. Eppala, M. M. Varghese, T. R. Vakamalla. (2023). Effect of particle shape on the hydrodynamics of gas-solid fluidized bed. Chemical Engineering Research and Design, vol. 189, p. 461-473.

[130] D. Boland, D. Geldart. (1972). Electrostatic charging in gas fluidized beds. Powder Technology vol. 5, p. 289-297.

[131] X. Yu, W. Li, Y. Xu, J. Wang, Y. Yang. (2010). Effect of polymer granules on the electrostatic behavior in gas-solid fluidized beds. Industrial & Engineering Chemistry Research, vol. 49, p.132–139.

[132] K. Kato, J. Li. (2001). A correlation of elutriation rate constant for adhesion particles [group C particles]. Powder Technology, vol. 118, p. 209–218.

[133] T. Nakazato, J. Li, K. Kato. (2004). Effect of cohesive powders on the elutriation of particles from a fluid bed. Chemical Engineering Science, vol. 59, p. 2777–2782.

[134] J. Baeyens, D. Geldart, S.Y. Wu. (1992). Elutriation of fines from gas fluidized bed of Geldart A-type powders-effect of adding superfines. Powder Technology, vol. 71, p. 71–80.

[135] Y. Tian, P. Mehrani. (2015). Effect of particle size in fluidization of polyethylene particle mixtures on the extent of bed electrification and wall coating. Electrostatics, vol. 76, p. 138-144.

[136] F. Aida, S. Wang, M. Fujita, G. Tanimoto, Y. Fujiwara. (1997). Study of the mechanism of space charge formation in polyethylene. Electrostatics, vol.42, p. 3–15.

[137] S. Matsusaka, M. Oki, H. Masuda. (2003). Bipolar charge distribution of a mixture of particles with different electrostatic characteristics in gas–solids pipe flow. Powder Technology, vol. 135–136, p. 150–155.

[138] D. Song, P. Mehrani. (2017). Effect of Fluidization Pressure on Electrostatic Charge Generation of Polyethylene Particles, Ind. Eng. Chem. Res., vol. 56, p. 14716−14724.

[139] M.I. Nimvari, A. Sowinski, P. Mehrani. (2022). Effect of temperature on triboelectrifcation of polyethylene particles in a pilot-scale pressurized gas-solid fluidized bed. Powder Technology, vol. 405, 117524.

[140] G. Tardos, R. Pfeffer, M. Peters, T. Sweeney. (1983). Filtration of airborne dust in a triboelectrically charged fluidized bed. Industrial and Engineering Chemistry Fundamentals vol. 22, p. 445–453.

[141] W. W. Kazmierczak. (1989). Triboelectrification in fluidized bed of polystyrene. Chemical Engineering Science, vol. 44, p. 2607–2610.

[142] A. Chen, H.T. Bi, J.R. Grace. (2003). Measurement of particle charge-to-mass ratios in a gas-solids fluidized bed by a collision probe. Powder Technology, vol. 135–136, p. 181–191.

[143] A. Giffin, P. Mehrani. (2013). Effect of gas relative humidity on reactor wall fouling generated due to bed electrification in gas-solid fluidized beds. Powder Technology, vol. 235, p. 368–375.

[144] E. Németh, V. Albrecht, G. Schubert, F. Simon. (2003). Polymer tribo-electric charging: dependence on thermodynamic surface properties and relative humidity. Electrostatics, vol. 58, p. 3–16.

[145] T. Nomura, T. Satoh, H. Masuda. (2003). The environment humidity effect on the tribo-charge of powder. Powder Technology, vol. 135–136, p. 43–49.

[146] R. Sharma, S. Trigwell, A.S. Biris, R.A. Sims, M.K. Mazumder. (2003). Effect of ambient relative humidity and surface modification on the charge decay properties of polymer powders in powder coating. IEEE Trans. Ind. Appl., vol. 39, p. 87–95.

[147] F. Fotovat, K. Gill, J.R. Grace, X. T. Bi. (2017). Impact of column material on electrostatics and entrainment of particles from gas-solid fluidized beds. Chemical Engineering Science, vol. 167, p. 120-134.

[148] A. Schella, S. Herminghaus, M. Schroter. (2017). Influence of humidity on tribo-electric charging and segregation in shaken granular media. Soft Material, vol. 13, p. 394–401.

[149] J. Kolehmainen, P. Sippola, O. Raitanen, A. Ozel, C.M. Boyce, P. Saarenrinne. (2017). Effect of humidity on triboelectric charging in a vertically vibrated granular bed: experiments and modeling. Chemical Engineering Science, vol. 173, p.363–373.

[150] P. Sippola, J. Kolehmainen, A. Ozel, X. Liu, P. Saarenrinne, S. Sundaresan. (2018). Experimental and numerical study of wall layer development in a tribocharged fluidized bed. Journal of Fluid Mechanics, vol. 849, p. 860-884.

[151] R. D. Cruise, K. Hadler, S.O. Starr, J.J. Cilliers. (2022). The effect of particle size and relative humidity on triboelectric charge saturation. Journal of Physics D: Applied Physics, vol. 55(18).

[152] A. Sowinski, P. Mehrani. (2015). Impact of Addition of a Catalyst or Its Support on Reactor Wall Coating Due to Electrostatic Charging during Fluidization of Polyethylene. Ind. Eng. Chem. Res., vol. 54, p. 3981−3988.

[153] S. Mihan, A.Lange, W. Rohde. (2000). Solid reactor with an antistatic coating for carrying out reactions in a gaseous phase. patent WO2000007716A1.

[154] C. He, X.T. Bi, J.R. Grace. (2015). Monitoring Electrostatics and Hydrodynamics in Gas−Solid Bubbling Fluidized Beds Using Novel Electrostatic Probes. Ind. Eng. Chem. Res., vol. 54, p. 8333−8343.

[155] M. Taghavivand, A. Sowinski, P. Mehrani. (2021). Triboelectric effects of continuity additives and a silica catalyst support on polyethylene fluidized bed wall fouling. Chemical Engineering Science, vol. 245, 116882.

[156] J. Taillet. (1997). Applications of supersonic injection of electric charges in chemical engineering, Electrostatics, vol.40&41, p. 265-270.

[157] J. Taillet. (2003). Static charge elimination on polymer particulates during their industrial production: supersonic injection technology, Powder Technology, vol. 135–136, p. 201–208.

[158] M. Kachi, M. Nemamcha, H. Lazhar, L. Dascalescu. (2011). Neutralization of charged insulating granular materials using AC corona discharge, Electrostatics vol. 69, p. 296-301.

[159] K. Dong, Q. Zhang, Z. Huang, Z. Liao, J. Wang, Y. Yang. (2014). Experimental investigation of electrostatic reduction in a gas – solid fluidized bed by an in-situ corona charge eliminator. Industrial & Engineering Chemistry Research, vol. 53, p. 14217–14224.

[160] M. Fujino, S. Ogata, H. Shinohara. (1985). The electric potential distribution profile in a naturally charged fluidized bed and its effects. Industrial & Engineering Chemistry Research, vol. 25, p. 149–159.

[161] B.D. Fulks, S.P. Sawin, C.D. Aikman, J.M. Jenkins. (1989). Process for reducing sheeting during polymerization of alpha-olefins. US Patent 4,876,320, Assigned to Union Carbide Chemicals and Plastics Company Inc.

[162] Y. Yamaguchi, S. Suga, M. Morikawa, K. Kubo, M. Watanabe, Y. Sano. (1995). Method for producing polyolefin. US Patent 5,385,991, Assigned to Nippon Petrochemicals Company, Ltd.

[163] J.R. Chirillo, K.C. Kimbrough II, P.E. McHattie. (1989). Method for reducing sheeting during polymerization of alpha-olefins. US Patent 4,855,370, Assigned to Union Carbide Corporation,

[164] M. G. Goode, C.C. Williams, F. D. Hussein, T. J. McNeil, K.H. Lee. (1998). Static control in olefin polymerization. US Patent 6111034A, Assigned to Union Carbide Chemicals & Plastics Technology Corporation.

[165] A. A. Park, L. Fan. (2007). Electrostatic charging phenomenon in gas–liquid–solid flow systems. Chemical Engineering Science, vol. 62, p. 371-386.

چاپ شده

2024-03-19

ارجاع به مقاله

How Electrostatics Disrupts Gas-Solid Fluidized Bed Operations: A Review. (2024). پایگاه مقالات مرکز همایشهای مهندسی توسعه, 1(1). https://pubs.bcnf.ir/index.php/Articles/article/view/15