Nanocomposites in Dentistry
کلمات کلیدی:
Nanocomposites, Dentistry, Biomaterials, Dental Restorationچکیده
Nanocomposites, as advanced materials in dentistry, have brought significant transformation to the field due to their unique physical, chemical, and mechanical properties. The limitations of traditional biomaterials, such as low resistance to wear, fracture, and water absorption, have led to the consideration of nanocomposites as suitable alternatives due to their superior properties. This paper examines the structure, classification, properties, and applications of nanocomposites in dentistry, exploring how these materials can enhance the therapeutic and restorative performance of dental treatments. The results indicate that nanocomposites, due to their improved mechanical, biological, and chemical properties, can be effective in treating dental issues such as caries, periodontitis, and restoring damaged tissues. However, further research is needed to evaluate their long-term effects in living environments and to optimize processing techniques.
مراجع
1. Sudha PN, Kirubanandam S, Vijayalakshmi K, Barhoum A. Nanomaterials history, classification, unique properties, production and market Current prospects and future trends micro and nano technologies Emerging applications of nanoparticles and architecture nanostructures. Amsterdam: Elsevier; 2018. p. 341-84
2. Duane B, Harford S, Ramasubbu D, Stancliffe R, Pasdeki-Clewer E, Lomax R, et al. Environmentally sustainable dentistry: a brief introduction to sustainable concepts within the dental practice. British Dental Journal 2019;226:292-5
3. Silva Soares LE, Nahorny S, de Faria Braga V, Marciano FR, Bhattacharjee TT, et al. Oral Dis 2018;24:228.
4. Mosher BP, Zeng T (2003) Synthesis and characterization of novel organic-inorganic nancomposite coatings. MRS Online Proc Libr 788(1):84
5. Silva RC, Agrelli A, Andrade AN, Mendes-Marques CL, Arruda IR, Santos LR, Machado G (2022) Titanium dental implants: an overview of applied nanobiotechnology to improve biocompatibility and prevent infections. Materials 15(9):3150
6. Lo Giudice R, Tribst JPM (2020) Dental materials coatings: effect on the clinical behavior. Coatings 10(12):1229
7. Sen M. Nanotechnology and the Environment 2020;. Available from: https://doi. org/10.5772/intechopen.93047.
8. P. Cevik and A. Z. Yildirim‐Bicer, "The effect of silica and prepolymer nanoparticles on the mechanical properties of denture base acrylic resin," Journal of prosthodontics, vol. 27, no. 8, pp. 763-770, 2018.
9. G. Ergun, Z. Sahin, and A. S. Ataol, "The effects of adding various ratios of zirconium oxide nanoparticles to poly (methyl methacrylate) on physical and mechanical properties," Journal of oral science, vol. 60, no. 2, pp. 304-315, 2018.
10. T. H. Abushowmi et al., "Comparative effect of glass fiber and nano‐filler addition on denture repair strength," Journal of Prosthodontics, vol. 29, no. 3, pp. 261-268, 2020.
11. A. Nabhan, M. Taha, and N. M. Ghazaly, "Filler loading effect of Al2O3/TiO2 nanoparticles on physical and mechanical characteristics of dental base composite (PMMA)," Polymer Testing, p. 107848, 2022.
12. K. Chęcińska, M. Chęciński, M. Sikora, Z. Nowak, S. Karwan, and D. Chlubek, "The Effect of Zirconium Dioxide (ZrO2) Nanoparticles Addition on the Mechanical Parameters of Polymethyl Methacrylate (PMMA): A Systematic Review and Meta-Analysis of Experimental Studies," Polymers, vol. 14, no. 5, p. 1047, 2022.
13. N. Elshereksi, A. Muchtar, and C. Azhari, "Effects of nanobarium titanate on physical and mechanical properties of poly (methyl methacrylate) denture base nanocomposites," Polymers and Polymer Composites, vol. 29, no. 5, pp. 484-496, 2021
14. W. Khan, N. Hamadneh, and W. Khan, "Science and applications of tailored nanostructures," ed: One Central Press (OCP), 2016.
15. J. Huang, J. Zhou, and M. Liu, "Interphase in polymer nanocomposites," JACS Au, vol. 2, no. 2, pp. 280-291, 2022.
16. Thostenson E, Li C, Chou TW. Nanocomposites in context. Composites Science and Technology 2005;65:491-516.
17. Funda G, Taschieri S, Bruno GA, Grecchi E, Paolo S, Girolamo D, et al. Nanotechnology scaffolds for alveolar bone regeneration. Materials (Basel) 2020;13:201.
18. H.H. Xu, J.L. Moreau, L. Sun, L.C. Chow, Strength and fluoride release characteristics of a calcium fluoride based dental nanocomposite, Biomaterials 29 (32) (2008) 4261–4267.
19. Arcos D, López-Noriega A, Ruiz-Hernández E, Terasaki O, Vallet-Regí M. Ordered mesoporous microspheres for bone grafting and drug delivery. Chemistry of Materials. 2009 Mar 24;21(6):1000-9.
20. Khurshid Z, Zafar M, Qasim S, Shahab S, Naseem M, AbuReqaiba A. Advances in nanotechnology for restorative dentistry. Materials. 2015 Feb;8(2):717-31
21. Chitsazi MT, Shirmohammadi A, Faramarzie M, Pourabbas R, Rostamzadeh AN. A clinical comparison of nano-crystalline hydroxyapatite (Ostim) and autogenous bone graft in the treatment of periodontal intrabony defects. Med Oral Patol Oral Cir Bucal. 2011 May 1;16(3):e448-53.
22. Vano M, Derchi G, Barone A, Covani U. Effectiveness of nano-hydroxyapatite toothpaste in reducing dentin hypersensitivity: a double-blind randomized controlled trial. Quintessence international. 2014 Sep 1;45(8).
23. Foster BL, Ramnitz MS, Gafni RI, Burke AB, Boyce AM, Lee JS, Wright JT, Akintoye SO, Somerman MJ, Collins MT. Rare bone diseases and their dental, oral, and craniofacial manifestations. Journal of dental research. 2014 Jul;93(7_suppl):7S-19S.
24. Huber FX, Belyaev O, Hillmeier J, Kock HJ, Huber C, Meeder PJ, Berger I. First histological observations on the incorporation of a novel nanocrystalline hydroxyapatite paste OSTIM® in human cancellous bone. BMC Musculoskeletal Disorders. 2006 Dec;7(1):1-4.
25. Malik A, Tahir Butt T, Zahid S, Zahid F, Waquar S, Rasool M, Qazi MH, Qazi AM. Use of magnetic nanoparticles as targeted therapy: theranostic approach to treat and diagnose cancer. Journal of Nanotechnology. 2017 May 30;2017.
26. Yu K, Liu M, Dai H, Huang X. Targeted drug delivery systems for bladder cancer therapy. Journal of Drug Delivery Science and Technology. 2020 Apr 1;56:101535.
27. Shrestha A, Kishen A. Antibacterial nanoparticles in endodontics: a review. Journal of endodontics. 2016 Oct 1;42(10):1417-26.
28. Kesler Shvero D, Zaltsman N, Weiss EI, Polak D, Hazan R, Beyth N. Lethal bacterial trap: cationic surface for endodontic sealing. Journal of Biomedical Materials Research Part A. 2016 Feb;104(2):427-34.
29. Kachoei M, Eskandarinejad F, Divband B, Khatamian M. The effect of zinc oxide nanoparticles deposition for friction reduction on orthodontic wires. Dental research journal. 2013 Jul;10(4):499.
30. Tay CY, Fang W, Setyawati MI, Chia SL, Tan KS, Hong CH, Leong DT. Nano-hydroxyapatite and nano-titanium dioxide exhibit different subcellular distribution and apoptotic profile in human oral epithelium. ACS applied materials & interfaces. 2014 May 14;6(9):6248-56
31. Hua Y, Gu L, Watanabe H. Micromechanical analysis of nanoparticle-reinforced dental composites. International Journal of Engineering Science. 2013 Aug 1;69:69-76.
32. Arafa MG, Mousa HA, Afifi NN. Preparation of PLGA chitosan based nanocarriers for enhancing antibacterial effect of ciprofloxacin in root canal infection. Drug Delivery. 2020 Jan 1;27(1):26-39.
33. Toledano M, Osorio R, Osorio E, Medina-Castillo AL, Toledano-Osorio M, Aguilera FS. Ions-modified nanoparticles affect functional remineralization and energy dissipation through the resin-dentin interface. Journal of the mechanical behavior of biomedical materials. 2017 Apr 1;68:62-79.
34. Wang S, Meng Y, Li C, Qian M, Huang R. Receptormediated drug delivery systems targeting to glioma. Nanomaterials. 2015 Dec 28;6(1):3.