بررسی رابطه ذخیره سازی و انرژی های تجدید پذیر و تامین ذخیره در برنامه ریزی بهینه سیستم های قدرت خارج از شبکه

Authors

  • فردین محمودی Author

Keywords:

منابع انرژی تجدیدپذیر, پایداری سیستم قدرت, سیستم های قدرت ترکیبی, ریزشبکه ها

Abstract

افزایش نفوذ منابع انرژی تجدیدپذیر مختلف به طور فزاینده، توان نیروگاه های قدرت عادی برای تضمین پایداری شبکه را دچار فرسایش می کند. دارایی های جایگزین مانند سیستم های ذخیره سازی و کنترل باید این خلاء را پر کنند و سیستم را پایدار نگه دارند، اما سهم همه آنها باید از قبل بررسی شده و با مدل های انرژی، مورد مطالعه قرار گیرند. اما مدل سازی محدودیت های عملیاتی مانند نیازمندی های توان احتیاطی منجر به افزایش بار محاسباتی، به ویژه در زمان بکارگیری روش های برنامه ریزی طولانی مدت با نیازهای وارد مدار شدن نیروگاه ها منجر به بار محاسباتی بیشتر می شود. بنابراین ابزارهای برنامه ریزی اغلب نیازهای ذخیره سازی را تقریب می زنند یا نادیده می گیرند که خطاهای برآوردی قابل توجهی به همراه دارد. این مقاله یک مدل جدید و توصیه های خط مشی برای یکپارچه سازی جنبه های طولانی مدت و نیازمندی های توان احتیاطی توان در برنامه ریزی ریزشبکه های خارج از شبکه را ارائه می کند. این چارچوب توسعه داده شده شامل شکل دهی یک مدل دقیق هزینه و وارد مدار شدن نیروگاه برای ژنراتورهای احتراق سوختی، فرمال سازی نیازمندی های توان احتیاطی توان و معرفی سهم فناوری های ذخیره سازی و غیرقابل توزیع برای توان احتیاطی می شود. فرمول ریاضی دارایی های مختلف و تاثیر متقابل این پدیده مدل سازی شده بررسی می شود. این رویکرد در یک جزیره مدیترانه­ای بدون ارتباط (شبکه) اجرا می شود. نتایج توازن قابل قبول میان زمان محاسبه و دقت در شبیه سازی سازی های ساعتی یک ساله را نشان می دهد. شواهد نشان می دهد که نادیده گرفتن نیازمندی های توان احتیاطی می تواند منجر به خطای پیش بینی 30 درصدی در هزینه ها و برآورد دست پائین نیازهای ضروری ذخیره سازی می شود. ممکن سازی ذخیره سازی برای تامین ذخیره کافی، هزینه های کلی سیستم (تا 20%-) و مصرف سوخت (35%-) را کاهش می دهد و پایداری را بهتر می کند، و بنابراین نقش اساسی ذخیره سازی را در تامین ذخیره نمایش می دهد.

Downloads

Download data is not yet available.

Author Biography

  • فردین محمودی,

      

References

[1] Renewables 2022: Analysis and Forecast to 2027, Int. Energy Agency (OECD), Paris, France, 2022.

[2] M. Martيnez-Barbeito, D. Gomila, and P. Colet, ‘‘Dynamical model for power grid frequency fluctuations: Application to islands with high penetration of wind generation,’’ IEEE Trans. Sustain. Energy, vol. 14, no. 3, pp. 1436–1445, Jul. 2023.

[3] X. Deng and T. Lv, ‘‘Power system planning with increasing variable renewable energy: A review of optimization models,’’ J. Cleaner Prod., vol. 246, Feb. 2020, Art. no. 118962.

[4] D. Haase and A. Maier, ‘‘Research for REGI committee—Islands of the European Union: State of play and future challenges,’’ Policy Dept. Struct. Cohesion Policies, European Parliament, Tech. Rep. PE 652.239 and ’REGI/INT/NT/2021-001, Mar. 2021.

[5] Transforming Small-Island Power Systems: Technical Planning Studies for the Integration of Variable Renewables, Int. Renew. Energy Agency, Abu Dhabi, United Arab Emirates, Dec. 2018.

[6] N. Helist , J. Kiviluoma, H. Holttinen, J. D. Lara, and B. Hodge, ‘‘Including operational aspects in the planning of power systems with large amounts of variable generation:Areviewof modeling approaches,’’ WIREs

Energy Environ., vol. 8, no. 5, p. e341, Sep. 2019.

[7] C. S. Lai, G. Locatelli, A. Pimm, X.Wu, and L. L. Lai, ‘‘A review on longterm electrical power system modeling with energy storage,’’ J. CleanerProd., vol. 280, Jan. 2021, Art. no. 124298.

[8] A. Fattahi, M. S. Diéguez, J. Sijm, G. M. Espa a, and A. Faaij, ‘‘Measuring accuracy and computational capacity trade-offs in an hourly integrated energy system model,’’ Adv. Appl. Energy, vol. 1, Feb. 2021, Art. no. 100009.

[9] G. Diaz, A. Inzunza, and R. Moreno, ‘‘The importance of time resolution, operational flexibility and risk aversion in quantifying the value of energy storage in long-term energy planning studies,’’ Renew. Sustain. Energy Rev., vol. 112, pp. 797–812, Sep. 2019.

[10] K. Poncelet, E. Delarue, and W. D’haeseleer, ‘‘Unit commitment constraints in long-term planning models: Relevance, pitfalls and the role of assumptions on flexibility,’’ Appl. Energy, vol. 258, Jan. 2020, Art. no. 113843.

[11] P. Marocco, R. Novo, A. Lanzini, G. Mattiazzo, and M. Santarelli, ‘‘Towards 100% renewable energy systems: The role of hydrogen and batteries,’’ J. Energy Storage, vol. 57, Jan. 2023, Art. no. 106306.

[12] R. Novo, P. Marocco, G. Giorgi, A. Lanzini, M. Santarelli, and G. Mattiazzo, ‘‘Planning the decarbonisation of energy systems: The importance of applying time series clustering to long-term models,’’ Energy Convers. Manag. X, vol. 15, Aug. 2022, Art. no. 100274.

[13] M. F. Ishraque, S. A. Shezan, M. M. Ali, and M. M. Rashid, ‘‘Optimization of load dispatch strategies for an islanded microgrid connected with renewable energy sources,’’ Appl. Energy, vol. 292, Jun. 2021, Art. no. 116879.

[14] E. Dudkina, D. Fioriti, E. Crisostomi, and D. Poli, ‘‘On the impact of different electricity markets on the operation of a network of microgrids in remote areas,’’ Electr. Power Syst. Res., vol. 212, Nov. 2022, Art. no. 108243.

[15] Y.-K. Wu, S.-R. Huang, W.-S. Tan, and C.-P. Chiu, ‘‘Impact of generation flexibility on the operating cost under a high penetration of renewable power integration,’’ in Proc. IEEE Ind. Appl. Soc. Annu. Meeting, Sep. 2019, pp. 1–11.

[16] Z. Tang, Y. Liu, L. Wu, J. Liu, and H. Gao, ‘‘Reserve model of energy storage in day-ahead joint energy and reserve markets: A stochastic UC solution,’’ IEEE Trans. Smart Grid, vol. 12, no. 1, pp. 372–382, Jan. 2021.

[17] Z. Li, P. Yang, Z. Zhao, and L. L. Lai, ‘‘Retrofit planning and flexible operation of coal-fired units using stochastic dual dynamic integer programming,’’ IEEE Trans. Power Syst., early access, Feb. 7, 2023, doi: 10.1109/TPWRS.2023.3243093.

[18] M. Navia, R. Orellana, S. Zarلte, M. Villaz n, S. Balderrama, and S. Quoilin, ‘‘Energy transition planning with high penetration of variable renewable energy in developing countries: The case of the Bolivian

interconnected power system,’’ Energies, vol. 15, no. 3, p. 968, Jan. 2022.

[19] X. Han, X. Chen, M. B. McElroy, S. Liao, C. P. Nielsen, and J. Wen, ‘‘Modeling formulation and validation for accelerated simulation and flexibility assessment on large scale power systems under higher renewable penetrations,’’ Appl. Energy, vol. 237, pp. 145–154, Mar. 2019.

[20] S. S. Oskouee, S. Kamali, and T. Amraee, ‘‘Primary frequency support in unit commitment using a multi-area frequency model with flywheel energy storage,’’ IEEE Trans. Power Syst., vol. 36, no. 6, pp. 5105–5119,

Nov. 2021.

[21] L. Tziovani, M. Savva, M. Asprou, P. Kolios, E. Kyriakides, R. Tapakis, M. Michael, and C. Hadjilaou, ‘‘Assessing the operational flexibility in power systems with energy storage integration,’’ in Flexitranstore. Cham, Switzerland: Springer, 2020.

[22] A. Flores-Quiroz and K. Strunz, ‘‘A distributed computing framework for multi-stage stochastic planning of renewable power systems with energy storage as flexibility option,’’ Appl. Energy, vol. 291, Jun. 2021, Art. no. 116736.

[23] N. Helist , J. Kiviluoma, G. Morales-Espa a, and C. O’Dwyer, ‘‘Impact of operational details and temporal representations on investment planning in energy systems dominated by wind and solar,’’ Appl. Energy, vol. 290, May 2021, Art. no. 116712.

[24] A. Vargiu, R. Novo, C. Moscoloni, E. Giglio, G. Giorgi, and G. Mattiazzo, ‘‘An energy cost assessment of future energy scenarios: A case study on San Pietro Island,’’ Energies, vol. 15, no. 13, p. 4535, Jun. 2022.

[25] T. Brijs, A. van Stiphout, S. Siddiqui, and R. Belmans, ‘‘Evaluating the role of electricity storage by considering short-term operation in long-term planning,’’ Sustain. Energy, Grids Netw., vol. 10, pp. 104–117, Jun. 2017.

[26] X. Wu, W. Zhao, H. Li, B. Liu, Z. Zhang, and X. Wang, ‘‘Multi-stage stochastic programming based offering strategy for hydrogen fueling station in joint energy, reserve markets,’’ Renew. Energy, vol. 180, pp. 605–615, Dec. 2021.

[27] M. Petrelli, D. Fioriti, A. Berizzi, and D. Poli, ‘‘Multi-year planning of a rural microgrid considering storage degradation,’’ IEEE Trans. Power Syst., vol. 36, no. 2, pp. 1459–1469, Mar. 2021.

[28] H.-K. Ringkj b, P. M. Haugan, and I. M. Solbrekke, ‘‘A review of modelling tools for energy and electricity systems with large shares of variable renewables,’’ Renew. Sustain. Energy Rev., vol. 96, pp. 440–459, Nov. 2018.

[29] Y. Jiang, L. Kang, and Y. Liu, ‘‘Optimal configuration of battery energy storage system with multiple types of batteries based on supply-demand characteristics,’’ Energy, vol. 206, Sep. 2020, Art. no. 118093.

[30] N. Zhang, H. Jiang, E. Du, Z. Zhuo, P. Wang, Z. Wang, and Y. Zhang, ‘‘An efficient power system planning model considering year-round hourly operation simulation,’’ IEEE Trans. Power Syst., vol. 37, no. 6, pp. 4925–4935, Nov. 2022.

[31] N. Zhang, Q. Sun, L. Yang, and Y. Li, ‘‘Event-triggered distributed hybrid control scheme for the integrated energy system,’’ IEEE Trans. Ind. Informat., vol. 18, no. 2, pp. 835–846, Feb. 2022.

[32] E. Giglio and D. Fioriti, ‘‘Add stand-by cost,’’ Tech. Rep., 2023. Accessed: Aug. 25, 2023. [Online]. Available: https://github.com/ PyPSA/PyPSA/pull/659

[33] T. Brown, J. H rsch, and D. Schlachtberger, ‘‘PyPSA: Python for power system analysis,’’ J. Open Res. Softw., vol. 6, no. 1, p. 4, Jan. 2018.

[34] C. Moscoloni, F. Zarra, R. Novo, E. Giglio, A. Vargiu, G. Mutani, G. Bracco, and G. Mattiazzo, ‘‘Wind turbines and rooftop photovoltaic technical potential assessment: Application to sicilian minor islands,’’ Energies, vol. 15, no. 15, p. 5548, Jul. 2022.

[35] Y. Liu, L. Guo, R. Hou, C. Wang, and X. Wang, ‘‘A hybrid stochastic/robust-based multi-period investment planning model for island microgrid,’’ Int. J. Electr. Power Energy Syst., vol. 130, Sep. 2021, Art. no. 106998.

[36] Renewable Power Generation Costs in 2021, Int. Renew. Energy Agency, Masdar City, United Arab Emirates, 2022.

[37] 2022 Annual Technology Baseline, Nat. Renew. Energy Lab. (NREL), Golden, CO, USA, 2022.

[38] M. Shields, P. Duffy, W. Musial, M. Laurienti, D. Heimiller, R. Spencer, and M. Optis, ‘‘The costs and feasibility of floating offshore wind energy in the O’ahu region,’’ Nat. Renew. Energy Lab. (NREL), Golden, CO, USA, Tech. Rep. NREL/TP-5000-80808, Oct. 2021.

[39] W. Cole, A. Frazier, and C. Augustine, ‘‘Cost projections for utility-scale battery storage: 2021 update,’’ Nat. Renew. Energy Lab. (NREL), Golden, CO, USA, Tech. Rep. NREL/TP-6A20-79236, Jun. 2021.

[40] R. Novo, F. D. Minuto, G. Bracco, G. Mattiazzo, R. Borchiellini, and A. Lanzini, ‘‘Supporting decarbonization strategies of local energy systems by de-risking investments in renewables: A case study on Pantelleria Island,’’ Energies, vol. 15, no. 3, p. 1103, Feb. 2022. 100796 VOLUME 11, 2023 E. Giglio et al.: Reserve Provision in the Optimal Planning of Off-Grid Power Systems

[41] H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, and J. Thépaut, ‘‘The ERA5 global reanalysis,’’ Quart. J. Roy. Meteorolog. Soc., vol. 146, no. 730, pp. 1999–2049, 2020.

[42] F. Ahmed, D. A. Kez, S. McLoone, R. J. Best, C. Cameron, and A. Foley, ‘‘Dynamic grid stability in low carbon power systems with minimum inertia,’’ Renew. Energy, vol. 210, pp. 486–506, Jul. 2023.

[43] R. Yudhistira, D. Khatiwada, and F. Sanchez, ‘‘A comparative life cycle assessment of lithium-ion and lead-acid batteries for grid energy storage,’’ J. Cleaner Prod., vol. 358, Jul. 2022, Art. no. 131999.

[44] F. B. Jasper, J. Sp نthe, M. Baumann, J. F. Peters, J. Ruhland, and M.Weil, ‘‘Life cycle assessment (LCA) of a battery home storage system based onprimary data,’’ J. Cleaner Prod., vol. 366, Sep. 2022, Art. no. 132899.

[45] User’s Manual for CPLEX, document Version 20.1.1, CPLEX and IBM ILOG, Int. Bus. Mach. Corp., Armonk, NY, USA, Mar. 2021.

[46] Y.-K.Wu,W.-S. Tan, Y.-S. Chiang, and C.-L. Huang, ‘‘Planning of flexible generators and energy storages under high penetration of renewable power in Taiwan power system,’’ Energies, vol. 15, no. 14, p. 5224, Jul. 2022.

[47] D. Curto, S. Favuzza, V. Franzitta, A. Guercio, M. A. N. Navia, E. Telaretti, and G. Zizzo, ‘‘Grid stability improvement using synthetic inertia by battery energy storage systems in small islands,’’ Energy, vol. 254, Sep. 2022, Art. no. 124456.

[48] F. Ramos, A. Pinheiro, R. Nascimento, W. de Araujo Silva Jr., M. A. Mohamed, A. Annuk, and M. H. N. Marinho, ‘‘Development of operation strategy for battery energy storage system into hybrid AC microgrids,’’ Sustainability, vol. 14, no. 21, p. 13765, Oct. 2022.

[49] Wنrtsilن 32 Product Manual, Oyj Abp, Helsinki, Finland,

Sep. 2016.

[50] Wنrtsilن Nohab F30, Diesel AB, Helsinki, Finland, 1980.

[51] Open Data-Analisi e Statistiche Energetiche e Minerarie, Ministero Dell’ambiente e Della Sicurezza Energetica, Rome, Italy, 2023.

[52] A. Q. Jakhrani, A. R. H. Rigit, A.-K. Othman, S. R. Samo, and S. A. Kamboh, ‘‘Estimation of carbon footprints from diesel generator emissions,’’ in Proc. Int. Conf. Green Ubiquitous Technol., Jul. 2012, pp. 78–81.

[53] M. Mohseni, S. F. Moosavian, and A. Hajinezhad, ‘‘Feasibility evaluation of an off-grid solar-biomass system for remote area electrification considering various economic factors,’’ Energy Sci. Eng., vol. 10, no. 8, pp. 3091–3107, Aug. 2022.

[54] N. Green, M. Mueller-Stoffels, and E. Whitney, ‘‘An Alaska case study: Diesel generator technologies,’’ J. Renew. Sustain. Energy, vol. 9, no. 6, Nov. 2017, Art. no. 061701.

Downloads

Published

2025-05-21

How to Cite

بررسی رابطه ذخیره سازی و انرژی های تجدید پذیر و تامین ذخیره در برنامه ریزی بهینه سیستم های قدرت خارج از شبکه. (2025). Development Engineering Conferences Center Articles Database, 2(7). https://pubs.bcnf.ir/index.php/Articles/article/view/606

Similar Articles

31-40 of 399

You may also start an advanced similarity search for this article.