بررسی اندرکنش خاک و سازه و تأثیر آن بر طراحی لرزهای ساختمانهای بلند: مروری بر مطالعات اخیر.
Keywords:
اندرکنش خاک و سازه, سازههای بلند, میراگر ویسکوز, طراحی لرزهایAbstract
اندرکنش خاک و سازه (SSI) تأثیر بسزایی بر عملکرد لرزهای ساختمانهای بلند، بهویژه در مناطقی با خاکهای نرم یا محیطهای شهری پرتراکم، دارد. این مقاله با مروری جامع بر مطالعات اخیر، اثرات مثبت و منفی SSI بر سازهها را بررسی میکند. درحالیکه SSI میتواند در شرایط خاص نیازهای لرزهای را کاهش دهد، در بسیاری از موارد باعث افزایش تغییرمکانهای جانبی، دریفتهای بینطبقهای و تنشهای فونداسیون، بهویژه در خاکهای نرم، میشود. برای درک بهتر این اثرات و ارائه راهبردهای کاهش آسیب، از تکنیکهای مدلسازی پیشرفته نظیر شبیهسازیهای المان محدود، روشهای احتمالاتی و آزمایشهای تجربی در مقیاس بزرگ استفاده شده است. یافتههای کلیدی بر اهمیت طراحی بهینه فونداسیون، چیدمان مؤثر سازهای و بهکارگیری دستگاههای اتلاف انرژی در بهبود عملکرد لرزهای تأکید دارند. این مطالعه همچنین بر ضرورت ادغام ملاحظات SSI در آییننامههای طراحی لرزهای و کاربردهای عملی مهندسی تأکید کرده و راهکارهایی در زمینه طراحی سیستمهای فونداسیون ویژه، تکنیکهای پیشرفته جداسازی لرزهای و ضرایب اصلاح پاسخ مبتنی بر ریسک ارائه میدهد. با هدف پر کردن شکاف میان تحقیقات نظری و کاربردهای عملی، این پژوهش به ارتقای مقاومت و پایداری ساختمانهای بلند در مناطق لرزهخیز اختصاص یافته است.
Downloads
References
[1] Ohsaki, Y. (1966). Niigata earthquakes, 1964 building damage and soil condition. SoilsFound. 6, 14–37. doi:10.3208/sandf1960.6.2_14
[2] Kramer, S. (1996). Geotechnical earthquake engineering. Upper Saddle River, NJ): Prentice-Hall.
[3] Stewart, J., and Kramer, S. (2004). Geotechnical aspects of seismic hazards. Earthq. Eng.doi:10.1201/9780203486245.ch4
[4] Kausel, E. (2010). Early history of soil–structure interaction. Soil Dynamics and Earthquake Engineering, 30(9), 822-832.
[5] Bielak, J. (1974). Dynamic behaviour of structures with embedded foundations. Earthq. Eng. Struct. Dyn. 3, 259–274. doi:10.1002/eqe.4290030305
[6] Johnson and Asfura A P, “Soil·Structure Interaction (SSI): Observations, Data, And Correlative Analysis,” 1993.
[7] Mylonakis, G., and Gazetas, G. (2000). Seismic soil-structure interaction: Beneficial or detrimental? J. Earthq. Eng. 4, 277–301. doi:10.1080/13632460009350372
[8] Wolf, J. P. (1989). Soil-structure-interaction analysis in time domain. Nuclear engineering and design, 111(3), 381-393.
[9] Dutta, S. C., and Roy, R. (2002). A critical review on idealization and modeling for interaction among soil-foundation-structure system. Comput. Struct. 80, 1579–1594. doi:10.1016/S0045-7949(02)00115-3
[10] ASCE (2016). Minimum design loads for buildings and other structures. ASCE/SEI 7-16).
[11] ATC (1978). Tentative provisions for the development of seismic Regulations for buildings: A cooperative effort with the design professions, building code interests and the research comunity.
[12] EN 1998-5 (2004). Design of structures for earthquake resistance - Part 5: Foundations, retaining structures and geotechnical aspects.
[13] Kraus, I., and Džakić, D. (2013). Soil-structure interaction effects on seismic behaviour of reinforced concrete frames. Conference: SE-50EEEAt: Skopje, Makedonija .
[14] Scholl, R. E. (1989). Observations of the performance of buildings during the 1985 Mexico earthquake, and structural design implications. Int. J. Min. Geol. Eng. 7, 69–99. doi:10.1007/BF01552841
[15] Menglin and W Jingning, “Effects Of Soil-Structure Interaction On Structural Vibration Control.”
[16] Kumar and S S Mishra, “Dynamic response of buildings on different types of foundations through shake table tests considering SSI effect,” International Journal of Civil Engineering and Technology, vol. 9, no. 8, pp. 205–216, 2018.
]17[ کریمیان قاشقای، احمد و ملکی نژادشهربابکی، محسن. 1402. اثر اندرکنش خاک و سازه بر کارآیی میراگر ویسکوز، در ساختمان بلند،هشتمین کنفرانس بین المللی پژوهش در علوم و مهندسی و پنجمین کنگره بین المللی عمران، معماری و شهرسازی آسیا،https://civilica.com/doc/1948039
[18] Naserkhaki, S.; Aziz, F.N.A.; Pourmohammad, H. Earthquake induced pounding between adjacent buildings considering soil-structure interaction. Earthq. Eng. Eng. Vib. 2012, 11, 343–358.
[19] Kazemi, F.; Miari, M.; Jankowski, R. Investigating the effects of structural pounding on the seismic performance of adjacent RC and steel MRFs. Bull. Earthq. Eng. 2021, 19, 317–343
[20] Raychowdhury, P., & Ray-Chaudhuri, S. (2015). Seismic response of nonstructural components supported by a 4-storey SMRF: Effect of nonlinear soil-structure interaction. Structures, 3, 200-210. DOI: 10.1016/j.istruc.2015.04.006
[21] Bapir, B.; Abrahamczyk, L.; Wichtmann, T.; Prada-Sarmiento, L.F. Soil-structure interaction: A state-of-the-art review of modeling techniques and studies on seismic response of building structures. Front. Built Environ. 2023, 9, 1120351.
[22] Kontoni, D.P.N.; Farghaly, A.A. Enhancing the earthquake resistance of RC and steel high-rise buildings by bracings, shear walls and TMDs considering SSI. Asian J. Civ. Eng. 2023, 24, 2595–2608
[23] MacCalden, P. B. (1969). Transmission of steady-state vibrations between rigid circular foundations. University of California, Los Angeles.
[24] D. Clouteau, D. Broc, G. Devésa, V. Guyonvarh, and P. Massin, "Calculation methods of Structure–Soil–Structure Interaction (3SI) for embedded buildings: Application to NUPEC tests," Soil Dynamics and Earthquake Engineering, vol. 32, pp. 129-142, 2012.
[25] Gajan S, Raychowdhury P, Hutchinson TC, Kutter BL, Stewart JP. Application and validation of practical tools for nonlinear soil-foundation interaction analysis. Earthquake Spectra 2009; 26: 111-129. DOI: https://doi.org/10.1193/1.3263242.
[26] Raychowdhury P, Hutchinson TC. Performance evaluation of a nonlinear winkler-based shallow foundation model using centrifuge test results. Earthquake Engineering and Structural Dynamics 2009; 38: 679-698. DOI: 10.1002/eqe.902.
[27] J. Lysmer and R. L. Kuhlemeyer, "Finite dynamic model for infinite media," Journal of the Engineering Mechanics Division, vol. 95, pp. 859-878, 1969.
[28] H. L. Wong and J. E. Luco, "Dynamic interaction between rigid foundations in a layered half-space," Soil Dynamics and Earthquake Engineering, vol. 5, pp. 149-158, 1986.
[29] H. T. Lin, J. Roesset, and J. Tassoulas, "Dynamic interaction between adjacent foundations," Earthquake engineering & structural dynamics, vol. 15, pp. 323-343, 1987.
[30] Rodríguez-Galván, E, Álamo, GM, Medina, C and Maeso, O 2023. Influence of seabed profile on the seismic response of monopile-supported offshore wind turbines including dynamic soil-structure interaction. Marine Structures, 92, 103500. https://doi.org/10.1016/J.MARSTRUC.2023.103500
[31] Poulos, HG and Davis, EH (1980) Pile foundation analysis and design, John Wiley & Sons, Inc., New York.
[32] Requena-Garcia-Cruz, M. V., Bento, R., Durand-Neyra, P., & Morales-Esteban, A. (2022, April). Analysis of the soil structure-interaction effects on the seismic vulnerability of mid-rise RC buildings in Lisbon. In Structures (Vol. 38, pp. 599-617). Elsevier.
[33] Sriwastav, R. K. (2022). Seismic vulnerability assessment of RC high-rise building considering soil–structure interaction effects. Asian Journal of Civil Engineering, 23(4), 585-608.
[34] Zhan, P., Xue, S., Li, X., Sun, G., & Ma, R. (2024). Seismic assessment of large-span spatial structures considering soil–structure interaction (SSI): A State-of-the-Art Review. Buildings, 14(4), 1174
[35] Dhadse GD, Ramtekkar G, Bhatt G. Thin layer interface: An alternative modeling consideration in soil-structure interaction system. Res. Eng. Struct. Mater., 2024; 10(3): 1173- 1194
[36] Krishnan, R., & Sivakumar, V. L. (2024). The Effect of Soil-Structure Interaction (SSI) on Structural Stability and Sustainability of RC Structures. Civ. Environ. Eng. Rep, 34, 116-136.
[37] Bolisetti, C., & Whittaker, A. S. (2020). Numerical investigations of structure-soil-structure interaction in buildings. Engineering Structures, 215, 110709.
[38] Ebadi-Jamkhaneh, M. (2024). Pounding Risk Assessment through Soil–Structure Interaction Analysis in Adjacent High-Rise RC Structures. Buildings, 14(9), 2779.
[39] Yeganeh, N., Bazaz, J. B., & Akhtarpour, A. (2015). Seismic analysis of the soil–structure interaction for a high rise building adjacent to deep excavation. Soil dynamics and earthquake engineering, 79, 149-170.
[40] Hoseyni, S. M., Yousefpour, F., Araei, A. A., Karimi, K., & Hoseyni, S. M. (2014). Effects of soil-structure interaction on fragility and seismic risk; a case study of power plant containment. Journal of Loss Prevention in the Process industries, 32, 276-285.
[41] Bapir, B., Abrahamczyk, L., Wichtmann, T., & Prada-Sarmiento, L. F. (2023). Soil-structure interaction: A state-of-the-art review of modeling techniques and studies on seismic response of building structures. Frontiers in Built Environment, 9, 1120351.
[42] Bariker, P., & Kolathayar, S. (2022). Dynamic soil structure interaction of a high-rise building resting over a finned pile mat. Infrastructures, 7(10), 142
[43] Vaseghiamiri, S., Mahsuli, M., Ghannad, M. A., & Zareian, F. (2020). Probabilistic approach to account for soil-structure interaction in seismic design of building structures. Journal of Structural Engineering, 146(9), 04020184.
[44] Gan, J., Li, P., & Liu, Q. (2019). Study on dynamic structure-soil-structure interaction of three adjacent tall buildings subjected to seismic loading. Sustainability, 12(1), 336
[45] Yang, J., Lu, Z., & Li, P. (2020). Large-scale shaking table test on tall buildings with viscous dampers considering pile-soil-structure interaction. Engineering Structures, 220, 110960.