Application of γ-Fe2O3/talc/CuII NPs as a magnetic and heterogenous nanaocatalyst in carbon-sulfur cross-coupling reaction
کلمات کلیدی:
γ-Fe2O3/talc/CuII NPs, aryl halide, C-S cross-coupling reaction, heterogeneous catalystچکیده
Herein a prominent, efficient, facile and environmentally benign catalytic activity of γ-Fe2O3/talc/CuII NPs (as a superparamagnetic composite with average diameter of about 20-30 nm) has been shown in C-S cross-coupling reaction. A wide variety of aryl iodides, aryl bromides and aryl chlorides with electron-donating or electron-withdrawing substituents reacted with S8/thiourea towards corresponding diphenyl sulfides under eco-friendly and mild process conditions. The results demonstrated remarkable catalytic activity of the aforesaid nanostructured catalyst such as chemoselectivity and functional group tolerance. γ-Fe2O3/talc/CuII NPs as a magnetic catalyst was stable under reaction conditions and can be recycled at least five times with minimal loss of catalytic activity. Moreover, the use of commercially available and chemically stable sulfur transfer agent, eco-friendly and low-cost solvent and base as well as operational simplicity and easier work-up procedure make this method a promising candidate for potential applications in some organic reactions.
دانلودها
مراجع
[1]
Liu, G.; Link, J.T.; Pei, Z.; Reilly, E.B.; Leitza, S.; Nguyen, B.; Marsh, K.C.; Okasinski, GF.; von Geldern, T.W.; Ormes, M.; Fowler, K. Discovery of Novel p-Arylthio Cinnamides as Antagonists of Leukocyte Function-Associated Antigen-1/Intracellular Adhesion Molecule-1 Interaction. 1. Identification of an Additional Binding Pocket Based on an Anilino Diaryl Sulfide Lead. J Med Chem. 2000, 43(21), 4025-4040.
[2]
Liu, G.; Huth, J.R.; Olejniczak, E.T.; Mendoza, R.; DeVries, P.; Leitza, S.; Reilly, E.B.; Okasinski, G.F.; Fesik, S.W.; von Geldern, T.W. Novel p-Arylthio Cinnamides as Antagonists of Leukocyte Function-Associated Antigen-1/Intracellular Adhesion Molecule-1 Interaction. 2. Mechanism of Inhibition and Structure-Based Improvement of Pharmaceutical Properties. J Med Chem. 2001, 44(8), 1202-1210.
[3]
Babu, S.G.; Karvembu, R. Room Temperature Ullmann Type C-O and C-S Cross Coupling of Aryl Halides with Phenol/Thiophenol Catalyzed by CuO Nanoparticles. Tetrahedron Lett. 2013, 54(13), 1677-1680.
[4]
McReynolds, M.D.; Dougherty, J.M.; Hanson, P.R. Synthesis of Phosphorus and Sulfur Heterocycles via Ring-Closing Olefin Metathesis. Chem Rev. 2004, 104(5), 2239-2258.
[5]
Marcantoni, E.; Massaccesi, M.; Petrini, M.; Bartoli, G.; Bellucci, M.C.; Bosco, M.; Sambri, L. A Novel Route to the Vinyl Sulfide Nine-Membered Macrocycle Moiety of Griseoviridin. J Org Chem. 2000, 65(15), 4553-4559.
[6]
D’Angelo, N.D.; Kim, T.S.; Andrews, K.; Booker, S.K.; Caenepeel, S.; Chen, K.; D’Amico, D.; Freeman, D.; Jiang, J.; Liu, L.; McCarter, J.D. Discovery and Optimization of a Series of Benzothiazole Phosphoinositide 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Dual Inhibitors. J Med Chem. 2011, 54(6), 1789-1811.
[7]
Xu, X.B.; Liu, J.; Zhang, J.J.; Wang, Y.W.; Peng, Y. Nickel-Mediated Inter-and Intramolecular C-S Coupling of Thiols and Thioacetates with Aryl Iodides at Room Temperature. Org Lett. 2013, (3), 550-553.
[8]
Trost, B.M.; Fleming, I. Comprehensive Organic Synthesis: Selectivity, Strategy, and Efficiency in Modern Organic Chemistry, vol. 4; Pergamon Press Ltd: New York, 1991.
[9]
Miyaura, N. In Metal- Catalyzed Cross Coupling Reactions, Meijere, A. de.; Diederich, F ed; Wiley-VCH: Weinheim, 2004.
[10]
Krief, A.; Abel, E. W.; Stone, F. G. A.; Wilkinson, G. In Comprehensive Organometallic Chemistry, ed. E; Pergamon Press Ltd: New York, 1995.
[11]
Zeni, G.; Lüdtke, D.S.; Panatieri, R.B.; Braga, A.L. Vinylic Tellurides: from Preparation to their Applicability in Organic Synthesis. Chem Rev. 2006, 106(3), 1032-1076.
[12]
[12] Perin, G.; Lenardao, E.J.; Jacob, R.G.; Panatieri, R.B. Synthesis of Vinyl Selenides. Chem Rev. 2009, 109(3), 1277-1301.
[13]
Li, Y.; Bao, G.; Wu, X.F. Palladium-Catalyzed Intermolecular Transthioetherification of Aryl Halides with Thioethers and Thioesters. Chem Sci. 2020, 11(8), 2187-2192.
[14]
Liu, B.; Lim, C.H.; Miyake, G.M. Transition-Metal-Free, Visible-Light-Promoted C-S Cross-Coupling through Intermolecular Charge Transfer. Synlett. 2018, 29(19), 2449-2455.
[15]
Singha, R.; Chettri, S.; Brahman, D.; Sinha, B.; Ghosh, P. Environmentally Benign Approach towards C-S Cross-Coupling Reaction by Organo-Copper (II) Complex. Mol Divers. 2022, 26(1), 505-511.
[16]
Rout, L.; Saha, P.; Jammi, S.; Punniyamurthy, T. Efficient Copper(I)‐Catalyzed C-S Cross Coupling of Thiols with Aryl Halides in Water. Eur J Org Chem. 2008, (4), 640-643.
[17]
Sperotto, E.; van Klink, G.P.; de Vries, J.G.; van Koten, G. Ligand-Free Copper-Catalyzed C-S Coupling of Aryl Iodides and Thiols. J Org Chem. 2008, 73(14), 5625-5628.
[18]
Liu, Z.J.; Vors, J.P.; Gesing, E.R.; Bolm, C. Ligand‐Free Copper‐Catalyzed Amination of Heteroaryl Halides with Alkyl‐and Arylamines. Adv Synth Catal. 2010, 352(18), 3158-3162.
https://chemistry.bcnf.ir Page 17
[19]
Yu, T.Y.; Pang, H.; Cao, Y.; Gallou, F.; Lipshutz; B.H. Safe, Scalable, Inexpensive, and Mild Nickel‐Catalyzed Migita‐Like C− S Cross‐Couplings in Recyclable Water. Angewandte Chemie International Edition. 2021, 60(7), 3708-3713.
[20]
Correa, A.; Carril, M.; Bolm, C. Iron‐Catalyzed S‐Arylation of Thiols with Aryl Iodides. Angew Chem Int Ed. 2008, 120(15), 2922-2925.
[21]
Wu, J.R.; Lin, C.H.; Lee, C.F. Iron-Catalyzed Thioetherification of Thiols with Aryl Iodides. Chem Comm. 2009, (29), 4450-4452.
[22]
Akkilagunta, V.K.; Reddy, V.P.; Rao, K.R. Recyclable Ion/Graphite Catalyst for C-S Cross Coupling of Thiols with Aryl Halides under Ligand-Free Conditions. Synlett. 2010, (08), 1260-1264.
[23]
Reddy, V.P.; Kumar, A.V.; Swapna, K.; Rao, K.R. Nano Indium Oxide as a Recyclable Catalyst for C-S Cross-Coupling of Thiols with Aryl Halides under Ligand Free Conditions. Org Lett. 2009, 11(8), 1697-1700.
[24]
Reddy, V.P.; Swapna, K.; Kumar, A.V.; Rao, K.R. Indium-Catalyzed C-S Cross-Coupling of Aryl Halides with Thiols. J Org Chem. 2009, 74(8), 3189-3191.
[25]
Beletskaya, I.P.; Ananikov, V.P. Transition-Metal-Catalyzed C-S, C-Se, and C-Te Bond Formation via Cross-Coupling and Atom-Economic Addition Reactions. Chem Rev. 2011, 111(3), 1596-1636.
[26]
Hartwig, J.F. Carbon-Heteroatom Bond Formation Catalysed by Organometallic Complexes. Nature. 2008, 455(7211), 314-322.
[27]
Fu, G.C. The Development of Versatile Methods for Palladium-Catalyzed Coupling Reactions of Aryl Electrophiles Through the Use of P(t-Bu)3 and PCy3 as Ligands. Acc. Chem Res. 2008, 41(11), 1555-1564. DOI:
[28]
Ghaderi, A. Advances in Transition-Metal Catalyzed Thioetherification Rreactions of AromaticCom pounds. Tetrahedron. 2016, 32(72), 4758-4782.
[29]
Vessally, E.; Didehban, K; Mohammadi, R.; Hosseinian, A.; Babazadeh, M. Recent Advantages in the Metal (Bulk and Aano)-Catalyzed S-Arylation Reactions of Thiols with Aryl Halides in Water: A Perfect Synergy for Eco-Compatible Preparation of Aromatic Thioethers. J Sulfur Chem. 2018, 39(3), 332-349.
[30]
Alizadeh, A.; Khalilzadeh, M.A.; Alipour, E.; Zareyee, D. Pd (II) Immobilized on Clinoptilolite as a Highly Active Heterogeneous Catalyst for Ullmann Coupling-Type S-Arylation of Thiols with Aryl Halides. Comb Chem High Throughput Screen. 2020, 23(7), 658-666.
[31]
Martín, M.T.; Marín, M.; Maya, C.; Prieto, A.; Nicasio, M.C. Ni (II) Precatalysts Enable Thioetherification of (Hetero) Aryl Halides and Tosylates and Tandem C-S/C-N Couplings. Chem Eur J. 2021, 27(48), 12320-12326.
[32]
Murashkina, A.V.; Mitrofanov, A.Y.; Beletskaya, I.P. Copper in Cross-Coupling Reactions: II. Arylation of Thiols. Russ J Org Chem. 2019, 55(11), 1629-1641.
[33]
Vaddamanu, M.; Velappan, K.; Prabusankar, G. Homoleptic and Heteroleptic Zn (II) Selone Catalysts for Thioetherification of Aryl Halides without Scrubbing Oxygen. New J Chem. 2020, 44(9), 3574-3583.
[34]
Tsuji, J. Transition Metal Reagents and Catalysts: Innovations in Organic Synthesis, John Wiley & Sons: New York, 2002.
[35]
Montgomery, J. Nickel‐catalyzed reductive cyclizations and couplings. Angew Chem Int Ed. 2004, 43(30), 3890-3908.
[36]
Kurita, T.; Abe, M.; Maegawa, T.; Monguchi, Y.; Sajiki, H. Ligand-and Base-Free Synthesis of 1, 3-Diynes Catalyzed by Low Loading of Heterogeneous Pd/C and CuI. Synlett. 2007, 2007(16), 2521-2524.
[37]
Li, Z.; Fu, Y.; Liu, L.; Guo, Q. Ni-Catalyzed C(sp2)-Carbon and C(sp2)-Heteroatom Cross-Coupling Reactions. Chin J Org Chem. 2005, 25(12), 1508.
[38]
Ley, S.V.; Thomas, A.W. Modern Synthetic Methods for Copper‐Mediated C(aryl)-O, C(aryl)- N, and C(aryl)-S Bond Formation. Angew Chem Int Ed. 2003, 42(44), 5400-5449.
[39]
Beccalli, E.M.; Broggini, G.; Martinelli, M.; Sottocornola, S. C-C, C-O, C-N Bond Formation on sp2 Carbon by Pd (II)-Catalyzed Reactions Involving Oxidant Agents. Chem Rev. 2007, 107(11), 5318-5365.
[40]
Prim, D.; Campagne, J.M.; Joseph, D.; Andrioletti, B. Palladium-Catalysed Reactions of Aryl
https://chemistry.bcnf.ir Page 18
Halides with Soft, Non-Organometallic Nucleophiles. Tetrahedron. 2002, 58(11), 2041-2076.
[41]
Ghorbani-Choghamarani, A.; Taherinia, Z. Synthesis of Peptide Nanofibers Decorated with Palladium Nanoparticles and its Application as an Efficient Catalyst for the Synthesis of Sulfides via Reaction of Aryl Halides with Thiourea or 2-Mercaptobenzothiazole. RSC Adv. 2016, 6(64), 59410-59421.
[42]
Roy, S.; Phukan, P. Biaryl Thioether Synthesis via CuI Catalyzed Dominothiolation of Aryl Halides in the Presence of DMAP as Ligand. Tetrahedron Lett. 2015, 56(19), 2426-2429.
[43]
Kuhn, M.; Falk, F.C.; Paradies, J. Palladium-Catalyzed C-S Coupling: Access to Thioethers, Benzo [b] Thiophenes, and Thieno [3, 2-b] Thiophenes. Organic Lett. 2011, 13(15), 4100-4103.
[44]
Reddy, K.H.; Reddy, V.P.; Shankar, J..; Madhav, B.; Kumar, B.A.; Nageswar, Y.V. Copper Oxide Nanoparticles Catalyzed Synthesis of Aryl Sulfides via Cascade Reaction of Aryl Halides with Thiourea. Tetrahedron Lett. 2011, 52(21), 2679-2682.
[45]
Kamal, A.; Srinivasulu, V.; Murty, J.C.; Shankaraiah, N.; Nagesh, N.; Srinivasa Reddy, T.; Subba Rao, A.V. Copper Oxide Nanoparticles Supported on Graphene Oxide‐Catalyzed S‐Arylation: An Efficient and Ligand‐Free Synthesis of Aryl Sulfides. Adv Synth Catal. 2013, 355(11‐12), 2297-2307.
[46]
Hajipour, A.R.; Fakhari, F.; Nabi Bidhendi, G. A Novel Heterogeneous Nanocatalyst: 2‐Methoxy‐1‐Phenylethanone Functionalized MCM‐41 Supported Cu (II) Complex for C‐S Coupling of Aryl Halides with Thiourea. Appl Organomet Chem. 2018, 32(4), e4270.
[47]
Wu, X.M.; Hu, W.Y. Direct Synthesis of Diaryl Sulfides by Copper-Catalyzed Coupling of Aryl Halides with Aminothiourea. Chin Chem Lett. 2012, 23(4), 391-394.
[48]
M.; Azizi, G. Highly Efficient and Magnetically Separable Nano-CuFe2O4 Catalyzed S-Arylation of Thiourea by Aryl/Heteroaryl Halides. Chin Chem Lett. 2014, 25(10), 1382-1386.
[49]
Lou, J.; Wang, Q.; Wu, P.; Wang, H.; Zhou, Y.G.; Yu, Z. Transition-Metal Mediated Carbon-Sulfur Bond Activation and Transformations: An Update. Chem Soc Rev. 2020, 49(13), 4307-4359.
[50]
Ghodsinia, S.S.; Akhlaghinia, B. CuI Anchored onto Mesoporous SBA-16 Functionalized by Aminated 3-Glycidyloxypropyltrimethoxysilane with Thiosemicarbazide (SBA-16/GPTMS-TSC-CuI): A Heterogeneous Mesostructured Catalyst for S-Arylation Reaction under Solvent-Free Conditions. Green Chem. 2019, 21(11), 3029-349.0
[51]
Vatandoust Namanloo, A.; Akhlaghinia, B.; Mohammadinezhad, A. Magnetically Recoverable Ferromagnetic 3D Hierarchical Core-Shell Fe3O4@ NiO/Co3O4 Microspheres as an Efficient and Ligand-Free Catalyst for C-S Bond Formation in Poly (Ethylene Glycol). J Sulfur Chem. 2020, 41(4), 446-461.
[52]
Ghafouri‐Nejad, R.; Hajjami, M.; Nejat, R. Preparation and Characterization of Ni‐Modified Graphene Oxide Complex as an Efficient Catalyst for the Synthesis of Sulfides via Reaction of Aryl Halides with S8 or Thiourea. Appl Organomet Chem. 2018, 32(4), e4248.
[53]
Kelly, C.B.; Lee, C.X.; Leadbeater, N.E. Copper-Catalyzed Direct Preparation of Diaryl Sulfides from Aryl Iodides Using Potassium Thiocyanate as a Sulfur Transfer Reagent. Tetrahedron Lett. 2011, 52(36), 4587-4589.
[54]
Abbasi, M.; Nowrouzi, N.; Latifi, H. Selective Synthesis of Organic Sulfides or Disulfides by Solvent Exchange from Aryl Halides and KSCN Catalyzed by NiCl2.6H2O. J Organomet Chem. 2016, 822, 112-117.
[55]
Hajipour, A.R.; Jajarmi, S. Highly Efficient and Reusable Polystyrene‐Supported Copper (II) Catalytic System for S‐Arylation of Potassium Thiocyanate by Aryl Halides in Water. Appl Organomet Chem. 2016, 30(7), 566-570.
[56]
Hajipour, A.R.; Hosseini, S.M.; Jajarmi, S. Histidine-Functionalized Chitosan-Cu (II) Complex: A Novel and Green Heterogeneous Nanocatalyst for Two and Three Component C-S Coupling Reactions. New J Chem. 2017, 41(15), 7447-7452.
[57]
Zhao, P.; Yin, H.; Gao, H.; Xi, C. Cu-Catalyzed Synthesis of Diaryl Thioethers and S-Cycles by Reaction of Aryl Iodides with Carbon Disulfide in the Presence of DBU. J Org Chem. 2013, 78(10), 5001-5006.
[58]
Zhou, Y. Microwave-Assisted, Metal-and Solvent-Free Synthesis of Diaryl Thioethers from Aryl Halides and Carbon Disulfide in the Presence of [DBUH]+[OAc]−. J Chem Res. 2016, 40(5), 305-307.
https://chemistry.bcnf.ir Page 19
[59]
Cao, X.T.; Zhang, P.F.; Zheng, H. Metal-Free Catalytic Synthesis of Diaryl Thioethers under Mild Conditions. New J Chem. 2016, 40(8), 6762-6767.
[60]
Rostami, A.; Rostami, A.; Ghaderi, A.; Gholinejad, M.; Gheisarzadeh, S. Copper-Catalyzed C-S Bond Formation via the Cleavage of C-O Bonds in the Presence of S8 as the Sulfur Source. Synthesis. 2017, 49(22), 5025-5038.
[61]
Yousofvand, Z.; Hajjami, M.; Ghorbani, F.; Ghafouri-Nejad, R. Synthesis of Ni (II)-3, 5-Dichloro-2-Hydroxybenzenesulfonyl Chloride Supported SBA-15 and its Application as a Nanoreactor Catalyst for the Synthesis of Diaryl Sulfides via Reaction of Aryl Halides with Thiourea or S8. J Porous Mater. 2018, 25(5), 1349-1358.
[62]
Khanmoradi, M.; Nikoorazm, M.; Ghorbani‐Choghamarani, A. Anchoring of Cu (II)Vanillin Schiff Base Complex on MCM‐41: A Highly Efficient and Recyclable Catalyst for Synthesis of Sulfides and 5‐Substituted 1H-Tetrazoles and Oxidation of Sulfides to Sulfoxides. Appl Organomet Chem. 2017, 31(9), e3693.
[63]
Amiri, K.; Rostami, A.; Rostami, A. CuFe2O4 Magnetic Nanoparticle Catalyzed Odorless Synthesis of Sulfides Using Phenylboronic Acid and Aryl Halides in the Presence of S8. New J Chem. 2016, 40(9), 7522-7528.
[64]
Chen, H.Y.; Peng, W.T.; Lee, Y.H.; Chang, Y.L.; Chen, Y.J.; Lai, Y.C.; Jheng, N.Y.; Chen, H.Y. Use of Base Control to Provide High Selectivity Between Diaryl Thioether and Diaryl Disulfide for C-S Coupling Reactions of Aryl Halides and Sulfur and a Mechanistic Study. Organometallics. 2013, 32(19), 5514-5522.
[65]
Nowrouzi, N.; Abbasi, M.; Latifi, H. Thiol-Free Route to Diaryl Sulfides by Cu Catalyzed Coupling of Sodium Thiosulfate with Aryl Halides. Chin J Catal. 2016, 37(9), 1550-1554.
[66]
Nguyen, T.B. Recent Advances in Organic Reactions Involving Elemental Sulfur. Adv Synth Catal. 2017, 359(7), 1066-1130.
[67]
Reis, L.A.; Ligiéro, C.B.; Andrade, A.A.; Taylor, J.G.; Miranda, P.C. Preparation of Polyaminopyridines Using a CuI/L-Proline-Catalyzed CN Polycoupling Reaction. Materials. 2012, 5(11), 2176-2189.
[68]
Pacchioni, G. Quantum Chemistry of Oxide Surfaces: From CO Chemisorption to the Identification of the Structure and Nature of Point Defects on MgO. Surf Rev Lett. 2000, 7(3), 277-306.
[69]
Knight, W.D.; Clemenger, K.; de Heer, W.A.; Saunders, W.A.; Chou, M.Y.; Cohen, M.L. Electronic Shell Structure and Abundances of Sodium Clusters. Phys Rev Lett. 1984, 52(24), 2141.
[70]
Kaldor, A.; Cox, D.M.; Zakin, M.R. Evolution of Size Effects in Chemical Dynamics, Part 2; Adv Chem Phys, 1988.
[71]
Chalaki, S.B.; Akhlaghinia, B. CuII Anchored onto the Magnetic Talc: A New Magnetic Nanostructured Catalyst for the One‐Pot Gram‐Scale Synthesis of 1H‐Pyrazolo [1,2‐b] Phthalazine‐5, 10‐Dione Derivatives. ChemistrySelect. 2020, 5(35), 11010-11019.
[72]
Boruah, P.R.; Ali, A.A.; Saikia, B.; Sarma, D. A Novel Green Protocol for Ligand Free Suzuki-Miyaura Cross-Coupling Reactions in WEB at Room Temperature. Green Chem. 2015, 17(3), 1442-1445.
[73]
Bailey, S.W. Polytypism of Trioctahedral 1:1 Layer Silicates. Clays Clay Miner. 1969, 17(6), 355-371.
[74]
Chabrol, K.; Gressier, M.; Pebere, N.; Menu, M.J.; Martin, F.; Bonino, J.P.; Marichal, C.; Brendle, J. Functionalization of Synthetic Talc-Like Phyllosilicates by Alkoxyorganosilane Grafting. J Mater Chem. 2010, 20(43), 9695-9706.
[75]
Bruno, M.; Prencipe, M.; Valdre, G. Ab Initio Quantum-Mechanical Modeling of Pyrophyllite [Al2Si4O10(OH)2] and Talc [Mg3Si4O10(OH)2] Surfaces. Phys Chem Miner. 2006, 33(1), 63-71.
[76]
Shylesh, S.; Schuenemann, V.; Thiel, W.R. Magnetically Separable Nanocatalysts: Bridges between Homogeneous and Heterogeneous Catalysis. Angew Chem Int Ed. 2010, 49(20), 3428-3459.
[77]
Baig, R.N.; Varma, R.S. Magnetically Retrievable Catalysts for Organic Synthesis. Chem Comm. 2013, 49(8), 752-770.
[78]
Zhang, M.; Liu, Y.H.; Shang, Z.R.; Hu, H.C.; Zhang, Z.H. Supported Molybdenum on Graphene Oxide/Fe3O4: An Efficient, Magnetically Separable Catalyst for One-Pot Construction of Spiro-
https://chemistry.bcnf.ir Page 20
Oxindole Dihydropyridines in Deep Eutectic Solvent under Microwave Irradiation. Catal Comm. 2017, 88, 39-44.
[79]
Chen, M.N.; Mo, L.P.; Cui, Z.S.; Zhang, Z.H. Magnetic Nanocatalysts: Synthesis and Application in Multicomponent Reactions. Curr Opin Green Sustain Chem. 2019, 15, 27-37.
[80]
Zhang, M.; Liu, P.; Liu, Y.H. Shang, Z.R.; Hu, H.C.; Zhang, Z.H. Magnetically Separable Graphene Oxide Anchored Sulfonic Acid: A Novel, Highly Efficient and Recyclable Catalyst for One-Pot Synthesis of 3,6-Di(Pyridin-3-yl)-1H-Pyrazolo [3,4-b] Pyridine-5-Carbonitriles in Deep Eutectic Solvent under Microwave Irradiation. RSC Adv. 2016, 6(108), 106160-106170.
[81]
Mohammadinezhad, A.; Akhlaghinia, B. Fe3O4@Boehmite-NH2-CoII NPs: An Inexpensive and Highly Efficient Heterogeneous Magnetic Nanocatalyst for the Suzuki-Miyaura and Heck-Mizoroki Cross-Coupling Reactions. Green Chem. 2017, 19(23), 5625-5641.
[82]
Zarei, Z.; Akhlaghinia, B. ZnII Doped and Immobilized on Functionalized Magnetic Hydrotalcite (Fe3O4/HT-SMTU-ZnII): A novel, Green and Magnetically Recyclable Bifunctional Nanocatalyst for the One-Pot Multi-Component Synthesis of Acridinediones under Solvent-Free Conditions. New J Chem. 2017, 41(24), 15485-15500.
[83]
Morsy, A.M. Performance of Magnetic Talc Titanium Oxide Composite for Thorium Ions Adsorption from Acidic Solution. Environ Technol Innov. 2017, 8, 399-410.
[84]
Marzbani, P.; Resalati, H.; Ghasemian, A.; Shakeri, A. Surface Modification of Talc Particles with Phthalimide: Study of Composite Structure and Consequences on Physical, Mechanical, and Optical Properties of Deinked Pulp. BioResources. 2016, 11(4), 8720-8738.
[85]
Gopal, R.A.; Song, M.; Yang D, Lkhagvaa T, Chandrasekaran S, Choi D. Synthesis of Hierarchically Structured γ-Fe2O3-PPy Nanocomposite as Effective Adsorbent for Cationic Dye Removal from Wastewater. Environ Pollut. 2020, 267, 115498.
[86]
Zarghani, M.; Akhlaghinia, B. Copper Immobilized on Aminated Ferrite Nanoparticles by 2‐Aminoethyl Dihydrogen Phosphate (Fe3O4@AEPH2‐CuII) Catalyses the Conversion of Aldoximes to Nitriles. Appl Organomet Chem. 2015, 29(10), 683-689.
[87]
Safari, J.; Zarnegar, Z.; Heydarian, M. Practical, Ecofriendly, and Highly Efficient Synthesis of 2-Amino-4H-Chromenes Using Nanocrystalline MgO as a Reusable Heterogeneous Catalyst in Aqueous Media. J Taibah Univ Sci. 2013, 7(1), 17-25.
[88]
Dewan, A.; Sarmah, M.; Bora, U.; Thakur, A.J. A Green Protocol for Ligand, Copper and Base Free Sonogashira Cross-Coupling Reaction. Tetrahedron Lett. 2016, 57(33), 3760-3763.
[89]
Saikia, B.; Borah, P.; Barua, N. C. H2O2 in WEB: A Highly Efficient Catalyst System for Dakin Reaction. Green Chem. 2015, 17(9), 4533-4536.
[90]
Allahi, A.; Akhlaghinia, B. WEB (Water Extract of Banana): An Efficient Natural Base for One-Pot Multi-Component Synthesis of 2-Amino-3, 5-Dicarbonitrile-6-Thio-Pyridines. Phosphorus Sulfur Silicon Relat Elem. 2020, 196(3), 328-336.
[91]
Deka, D.C.; Talukdar, N.N. Chemical and Spectroscopic Investigation of Kolakhar and its Commercial Importance. Indian J Tradit Knowl. 2007, 6, 72-78.
[92]
Botteselle, G.V.; Godoi, M.; Galetto, F.Z.; Bettanin, L.; Singh, D.; Rodrigues, O.E.; Braga, A.L. Microwave-Assisted One-Pot Synthesis of Symmetrical Diselenides, Ditellurides and Disulfides from Organoyl Iodides and Elemental Chalcogen Catalyzed by CuO Nanoparticles. J Mol Catal A Chem. 2012, 365, 186-193.
[93]
Guo, X.; Rao, H.; Fu, H.; Jiang, Y.; Zhao, Y. An Inexpensive and Efficient Copper Catalyst for N‐Arylation of Amines, Amides and Nitrogen‐Containing Heterocycles. Adv Synth Catal. 2006, 348(15), 2197-2202.
[94]
Taqanaki, E.R.; Heidari, R.; Monfared, M.; Tayebi, L.; Azadi, A.; Farjadian, F. EDTA-Modified Mesoporous Silica as Supra Adsorbent of Copper Ions with Novel Approach as an Antidote Agent in Copper Toxicity. Int J Nanomedicine. 2019, 14, 7781-7791