نقش هوش مصنوعی و مدل‌های عددی برای ارزیابی و پیش‌بینی جامع سلامت سازه در مهندسی سد: مروری جامع و سیستماتیک

Authors

  • میلاد مرادی سارخانلو دانشجوی دکتری مهندسی عمران – گرایش مدیریت منابع آب، دانشکده مهندسی عمران، دانشگاه صنعتی شریف، تهران Author

Keywords:

ارزیابی سلامت سد, مدل‌های عددی, مدل‌های داده‌محور, مدل‌های ترکیبی, هوش مصنوعی

Abstract

ارزیابی سلامت سدها در حفظ پایداری و تعیین طول عمر سازه به موضوعی بسیار مهم تبدیل شده است. مدل‌های ارزیابی سلامت سد با پیشرفت حسگرها و ابزارهای دقیق جمع‌آوری داده، می‌توانند تخمینی از پاسخ‌های سد نسبت به اندازه‌گیری‌های واقعی تحت شرایط بارگذاری استاتیکی و دینامیکی ارائه کنند و نتیجه‌گیری در مورد ایمنی و سلامت سد را ممکن سازند. این مقاله به مروری بر مدل‌های مختلف ارزیابی سلامت سد در چند سال گذشته پرداخته است. در این مقاله، مدل‌های ارزیابی به سه دسته مدل‌های عددی، داده‌محور و مدل‌های ترکیبی طبقه‌بندی شده‌اند. در میان این سه مدل، مدل‌های داده‌محور در سال‌های اخیر به دلیل پیشرفت در هوش مصنوعی و سایر ابزارهای آماری مورد توجه قرار گرفته‌اند. در این مقاله، مروری سیستماتیک از این مدل‌ها به همراه کاربرد، مزایا و محدودیت‌های آن‌ها پوشش داده شده و خلاصه‌ای از دانش موجود در زمینه ارزیابی سلامت سد برای تشخیص و تحلیل آسیب سازه سد بررسی شده است.÷

Downloads

Download data is not yet available.

Author Biography

  • میلاد مرادی سارخانلو, دانشجوی دکتری مهندسی عمران – گرایش مدیریت منابع آب، دانشکده مهندسی عمران، دانشگاه صنعتی شریف، تهران

      

References

[1] Lane, N., 2007. Aging infrastructure: Dam safety. Congressional Research Service.

[2] Sivasuriyan, A., Vijayan, D.S., Górski, W., Wodzyński, Ł., Vaverková, M.D. and Koda, E., 2021. Practical implementation of structural health monitoring in multi-story buildings. Buildings, 11(6), p.263. https://doi.org/10. 3390/buildings11060263.

[3] Salazar, F., Morán, R., Toledo, M.Á. and Oñate, E., 2017. Data-based models for the prediction of dam behaviour: a review and some methodological considerations. Archives of computational methods in engineering, 24, pp.1-21. https://doi.org/10.1007/s11831-015-9157-9.

[4] Huebner, K.H., Dewhirst, D.L., Smith, D.E. and Byrom, T.G., 2001. The finite element method for engineers. John Wiley & Sons.

[5] Reddy, J.N., 1993. An introduction to the finite element method. New York, 27, p.14.

[6] Hariri-Ardebili, M.A., 2018. Risk, Reliability, Resilience (R3) and beyond in dam engineering: A state-of-the-art review. International journal of disaster risk reduction, 31, pp.806-831. https://doi.org/10.1016/j.ijdrr. 2018.07.024.

[7] Kalinina, A., Spada, M., Marelli, S., Burgherr, P. and Sudret, B., 2016. Uncertainties in the risk assessment of hydropower dams: state-of-the-art and outlook (Doctoral dissertation, Paul Scherrer Institute, 5232 Villigen, Switzerland; ETH Zurich, Chair of Risk, Safety and Uncertainty Quantifi-cation, Stefano-Franscini-Platz 5, 8093 Zurich, Switzerland).

[8] Chen, Y.W., Stanley, K. and Att, W., 2020. Artificial intelligence in dentistry: current applications and future perspectives. Quintessence Int, 51(3), pp.248-57.

[9] Himeur, Y., Ghanem, K., Alsalemi, A., Bensaali, F. and Amira, A., 2021. Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives. Applied Energy, 287, p.116601. https://doi.org/10.1016/j. apenergy.2021.116601.

[10] O'Keefe, R.M. and O'Leary, D.E., 1993. Expert system verification and validation: a survey and tutorial. Artificial Intelligence Review, 7, pp.3-42. https://doi.org/10.1007/ BF00849196.

[11] Jeong, S., Zhang, Y., O’Connor, S., Lynch, J.P., Sohn, H. and Law, K.H., 2016. A NoSQL data management infrastructure for bridge monitoring. Smart structures and systems, 17(4), pp.669-690.

[12] Bukenya, P., Moyo, P., Beushausen, H. and Oosthuizen, C., 2014. Health monitoring of concrete dams: a literature review. Journal of Civil Structural Health Monitoring, 4, pp.235-244. https://doi.org/10.1007/s13349-014-0079-2.

[13] Li, B., Yang, J. and Hu, D., 2020. Dam monitoring data analysis methods: A literature review. Structural Control and Health Monitoring, 27(3), p.e2501. https://doi.org/10.1002/ stc.2501.

[14] Hariri-Ardebili, M.A., Mahdavi, G., Nuss, L.K. and Lall, U., 2023. The role of artificial intelligence and digital technologies in dam engineering: Narrative review and outlook. Engineering Applications of Artificial Intelligence, 126, p.106813. https://doi.org/10.1016/j. engappai.2023. 106813.

[15] Sivasuriyan, A., Vijayan, D.S., Munusami, R. and Devarajan, P., 2021. Health assessment of dams under various environmental conditions using structural health monitoring techniques: a state-of-art review. Environmental Science and Pollution Research, pp.1-12. https://doi.org/10. 1007/s11356-021-16749-3.

[16] Zamarrón-Mieza, I., Yepes, V. and Moreno-Jiménez, J.M., 2017. A systematic review of application of multi-criteria decision analysis for aging-dam management. Journal of Cleaner Production, 147, pp.217-230. https://doi. org/10.1016/j.jclepro.2017.01.092.

[17] Moradi Sarkhanlou, M., Toufigh, V. and Ghaemian, M., 2024. Integrated analysis of instrumentation data for structural health assessment and behavior prediction of arch dams. Journal of Civil Structural Health Monitoring, pp.1-25. https://doi.org/10.1007/s13349-024-00819-4.

[18] Loh, C.H., Chen, C.H. and Hsu, T.Y., 2011. Application of advanced statistical methods for extracting long-term trends in static monitoring data from an arch dam. Structural Health Monitoring, 10(6), pp.587-601. https://doi.org/10. 1177/1475921710395807.

[19] Léger, P. and Leclerc, M., 2007. Hydrostatic, temperature, time-displacement model for concrete dams. Journal of engineering mechanics, 133(3), pp.267-277. https://doi.org/ 10.1061/(ASCE)07339399(2007)133:3(267).

[20] Mata, J., Tavares de Castro, A. and Sá da Costa, J., 2014. Constructing statistical models for arch dam deformation. Structural Control and Health Monitoring, 21(3), pp.423-437. https://doi.org/10.1002/stc.1575.

[21] Prakash, G., Sadhu, A., Narasimhan, S. and Brehe, J.M., 2018. Initial service life data towards structural health monitoring of a concrete arch dam. Structural Control and Health Monitoring, 25(1), p.e2036. https://doi.org/10.1002/ stc.2036.

[22] Mata, J., 2011. Interpretation of concrete dam behaviour with artificial neural network and multiple linear regression models. Engineering structures, 33(3), pp.903-910. https://doi.org/10.1016/j.engstruct.2010.12.011.

[23] Elith, J., Leathwick, J.R. and Hastie, T., 2008. A working guide to boosted regression trees. Journal of animal ecology, 77(4), pp.802-813. https://doi.org/10.1111/ j.13652656. 2008.01390.x.

[24] Hochreiter, S. and Schmidhuber, J., 1997. Long short-term memory. Neural computation, 9(8), pp.1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735.

[25] Pereira, S., Magalhães, F., Gomes, J.P., Cunha, Á. and Lemos, J.V., 2018. Dynamic monitoring of a concrete arch dam during the first filling of the reservoir. Engineering Structures, 174, pp.548-560. https://doi.org/10.1016/j. engstruct.2018.07.076.

[26] Ljunggren, M., Logan, T. and Campbell, P., 2013. Is your dam as safe as your data suggest. In Proceedings of the NZSOLD/ANCOLD conference (Vol. 1).

[27] Xu, Y., Huang, H., Li, Y., Zhou, J., Lu, X. and Wang, Y., 2022. A three-stage online anomaly identification model for monitoring data in dams. Structural Health Monitoring, 21(3), pp.1183-1206. https://doi.org/10.1177/14759217211 025766.

[28] Li, X., Li, Y., Lu, X., Wang, Y., Zhang, H. and Zhang, P., 2020. An online anomaly recognition and early warning model for dam safety monitoring data. Structural Health Monitoring, 19(3), pp.796-809. https://doi.org/10.1177/14 75921719864265.

[29] Hu, J. and Ma, F., 2021. Comparison of hierarchical clustering based deformation prediction models for high arch dams during the initial operation period. Journal of Civil Structural Health Monitoring, 11(4), pp.897-914. https://doi.org/10.1007/s13349-021-00487-8.

[30] Quecedo, M., Pastor, M., Herreros, M.I., Merodo, J.F. and Zhang, Q., 2005. Comparison of two mathematical models for solving the dam break problem using the FEM method. Computer Methods in Applied Mechanics and Engineering, 194(36-38), pp.3984-4005. https://doi.org/10. 1016/j.cma.2004.09.011.

[31] Andonov, A.G., Iliev, A. and Apostolov, K.S., 2013. Towards Displacement-based seismic assessment of concrete dams using non-linear static and dynamic procedures. Structural Engineering International, 23(2), pp.132-140. https://doi.org/10.2749/101 686613X13439149 157074.

[32] De Sortis, A. and Paoliani, P., 2007. Statistical analysis and structural identification in concrete dam monitoring. Engineering structures, 29(1), pp.110-120. https://doi.org/10. 1016/j.engstruct.2006.04.022.

[33] Sevim, B., Bayraktar, A., Altunişik, A.C., Adanur, S. and Akköse, M., 2012. Determination of water level effects on the dynamic characteristics of a prototype arch dam model using ambient vibration testing. Experimental Techniques, 36, pp.72-82. https://doi. org/10.1111/j.1747-1567.2010.00671.x.

[34] Barpi, F. and Valente, S., 2000. Numerical simulation of prenotched gravity dam models. Journal of Engineering Mechanics, 126(6), pp.611-619.https://doi.org/10.1061/ (ASCE)0733-9399(2000)126:6(611).

[35] Chen, J., Wang, M. and Fan, S., 2013. Experimental investigation of small‐scaled model for powerhouse dam section on shaking table. Structural Control and Health Monitoring, 20(5), pp.740-752. https://doi.org/10.1002/stc. 1489.

[36] Wang, M., Chen, J., Wei, H. and Song, B., 2019. Experimental investigation of a small-scaled model for overflow section of a high gravity dam on shaking table. Advances in Mechanical Engineering, 11(2), p.1687814019829959. table. Advances in Mechanical Engineering. 2019 Feb;11(2):1687814019829959. https://doi.org/10.1177/16878140198 29959.

[37] Sevieri, G. and De Falco, A., 2020. Dynamic structural health monitoring for concrete gravity dams based on the Bayesian inference. Journal of Civil Structural Health Monitoring, 10(2), pp.235-250. https://doi.org/10.1007/ s13349-020-00380-w.

[38] Wu, S.Y., Cao, W. and Zheng, J., 2016. Analysis of working behavior of Jinping-I Arch Dam during initial impoundment. Water Science and Engineering, 9(3), pp.240-248. https:// doi.org/10.1016/j.wse.2016.11.001.

[39] Chouinard, L. and Roy, V., 2006, June. Performance of statistical models for dam monitoring data. In Joint international conference on computing and decision making in civil and building engineering, Montreal (pp. 14-16).

[40] Wang, B.S. and He, Z.C., 2007. Crack detection of arch dam using statistical neural network based on the reductions of natural frequencies. Journal of Sound and Vibration, 302(4-5), pp.1037-1047. https://doi.org/10.1016/ j.jsv.2007.01.008.

[41] Mata, J., de Castro, A.T. and da Costa, J.S., 2013. Time–frequency analysis for concrete dam safety control: Correlation between the daily variation of structural response and air temperature. Engineering structures, 48, pp.658-665. https://doi.org/10.1016/j.engstruct. 2012.12.013.

[42] Tatin, M., Briffaut, M., Dufour, F., Simon, A. and Fabre, J.P., 2015. Thermal displacements of concrete dams: Accounting for water temperature in statistical models. Engineering Structures, 91, pp.26-39. https://doi.org/10. 1016/j.engstruct.2015.01.047.

[43] Amberg, F., 2009, May. Interpretative models for concrete dam displacements. In 23th ICOLD congress, q91-R43.

[44] Tatin, M., Briffaut, M., Dufour, F., Simon, A. and Fabre, J.P., 2018. Statistical modelling of thermal displacements for concrete dams: Influence of water temperature profile and dam thickness profile. Engineering Structures, 165, pp.63-75. https://doi.org/10. 1016/j. engstruct.2018.03.010.

[45] Perner, F. and Obernhuber, P., 2010. Analysis of arch dam deformations. Frontiers of Architecture and Civil Engineering in China, 4, pp.102-108. https://doi.org/10.1007/s11709-010-0012-7.

[46] Lew, J.S. and Loh, C.H., 2014. Structural health monitoring of an arch dam from static deformation. Journal of Civil Structural Health Monitoring, 4, pp.245-253. https: //doi.org/10.1007/s13349-014-0084-5.

[47] Wang, S., Xu, Y., Gu, C., Bao, T., Xia, Q. and Hu, K., 2019. Hysteretic effect considered monitoring model for interpreting abnormal deformation behavior of arch dams: a case study. Structural Control and Health Monitoring, 26(10), p.e2417. https://doi.org/10. 1002/stc.2417.

[48] Prakash, G. and Balomenos, G.P., 2021, October. A Bayesian approach to model selection and averaging of hydrostatic-season-temperature-time model. In Structures (Vol. 33, pp. 4359-4370). Elsevier. https://doi.org/10.1016/ j.istruc.2021.06.109.

[49] Gamse, S., Zhou, W.H., Tan, F., Yuen, K.V. and Oberguggenberger, M., 2018. Hydrostatic-season-time model updating using Bayesian model class selection. Reliability Engineering & System Safety, 169, pp.40-50. https://doi.org/10.1016/j.ress.2017.07.018.

[50] Wei, B., Yuan, D., Li, H. and Xu, Z., 2019. Combination forecast model for concrete dam displacement considering residual correction. Structural Health Monitoring, 18(1), pp.232-244. https://doi.org/10.1177/ 1475921717748608.

[51] Kao, C.Y. and Loh, C.H., 2013. Monitoring of long‐term static deformation data of Fei‐Tsui arch dam using artificial neural network‐based approaches. Structural Control and Health Monitoring, 20(3), pp.282-303. https:// doi.org/10.1002/stc.492.

[52] Liu, X., Kang, F., Ma, C. and Li, H., 2021. Concrete arch dam behavior prediction using kernel-extreme learning machines considering thermal effect. Journal of Civil Structural Health Monitoring, 11(2), pp.283-299. https:// doi.org/10.1007/s13349-020-00452-x.

[53] Han, B., Geng, F., Dai, S., Gan, G., Liu, S. and Yao, L., 2020. Statistically optimized back-propagation neural-network model and its application for deformation monitoring and prediction of concrete-face rockfill dams. Journal of Performance of Constructed Facilities, 34(4), p.04020071.https://doi.org/10.1061/(ASCE)CF.19435509.0001485.

[54] Assaad, R. and El-Adaway, I.H., 2020. Evaluation and prediction of the hazard potential level of dam infrastructures using computational artificial intelligence algorithms. Journal of Management in Engineering, 36(5), p.04020051.https://doi.org/10.1061/(ASCE)ME. 1943-5479. 0000810.

[55] Li, Y., Bao, T., Xu, B., Shu, X., Zhou, Y., Du, Y., Wang, R. and Zhang, K., 2022. A deep residual neural network framework with transfer learning for concrete dams patch-level crack classification and weakly-supervised localization. Measurement, 188, p.110641. https://doi.org/ 10.1016/j.measurement.2021.110641.

[56] Cheng, L. and Zheng, D., 2013. Two online dam safety monitoring models based on the process of extracting environmental effect. Advances in Engineering Software, 57, pp.48-56. https://doi.org/10.1016/j.advengsoft.2012.11. 015.

[57] Ranković, V., Grujović, N., Divac, D. and Milivojević, N., 2014. Development of support vector regression identification model for prediction of dam structural behaviour. Structural Safety, 48, pp.33-39. https://doi.org/ 10.1016/j.strusafe.2014.02.004.

[58] Tabari, M.M.R. and Sanayei, H.R.Z., 2019. Prediction of the intermediate block displacement of the dam crest using artificial neural network and support vector regression models. Soft Computing, 23, pp.9629-9645. https://doi.org/ 10.1007/s00500-018-3528-8.

[59] Cheng, M.Y., Cao, M.T. and Huang, I.F., 2022. Hybrid artificial intelligence-based inference models for accurately predicting dam body displacements: A case study of the Fei Tsui dam. Structural Health Monitoring, 21(4), pp.1738-1756. https://doi.org/10.1177/ 14759217211044116.

[60] میلاد مرادی سارخانلو, وهب توفیق, محسن قائمیان. صحت‌سنجی مدل‌های یادگیری ماشین برای تفسیر و پیش‌بینی رفتار سازه‌ای سدها با استفاده از داده‌های ابزار دقیق. InDevelopment Engineering Conferences Center Articles Database 2024 Jun 20 (Vol. 1, No. 2).‎

[61] Yang, D., Gu, C., Zhu, Y., Dai, B., Zhang, K., Zhang, Z. and Li, B., 2020. A concrete dam deformation prediction method based on LSTM with attention mechanism. Ieee Access, 8, pp.185177-185186. https://doi.org/10.1109/ ACCESS.2020.3029562.

[62] Feng, C., Zhang, H., Wang, H., Wang, S. and Li, Y., 2020. Automatic pixel-level crack detection on dam surface using deep convolutional network. Sensors, 20(7), p.2069. https://doi.org/10.3390/s20072069.

[63] Mao, Y., Zhang, J., Qi, H. and Wang, L., 2019. DNN-MVL: DNN-multi-view-learning-based recover block missing data in a dam safety monitoring system. Sensors, 19(13), p.2895. https://doi.org/10.3390/s19132895.

[64] Kang, F., Li, J., Zhao, S. and Wang, Y., 2019. Structural health monitoring of concrete dams using long-term air temperature for thermal effect simulation. Engineering Structures, 180, pp.642-653. https://doi.org/10. 1016/j.engstruct.2018.11.065.

[65] Ren, Q., Li, M., Li, H. and Shen, Y., 2021. A novel deep learning prediction model for concrete dam displacements using interpretable mixed attention mechanism. Advanced Engineering Informatics, 50, p.101407. https://doi.org/10.1016/j.aei.2021.101407.

[66] Karimi, I., Khaji, N., Ahmadi, M.T. and Mirzayee, M., 2010. System identification of concrete gravity dams using artificial neural networks based on a hybrid finite element–boundary element approach. Engineering structures, 32(11), pp.3583-3591. https://doi.org /10.1016/j.engstruct. 2010.08. 002.

[67] Lin, C., Li, T., Liu, X., Zhao, L., Chen, S. and Qi, H., 2019. A deformation separation method for gravity dam body and foundation based on the observed displacements. Structural Control and Health Monitoring, 26(2), p.e2304. https://doi.org/10.1002/stc.2304.

[68] Sevieri, G., Andreini, M., De Falco, A. and Matthies, H.G., 2019. Concrete gravity dam model parameters updating using static measurements. Engineering Structures, 196, p.109231. https://doi.org/10.1016/j. engstruct.2019.05. 072.

[69] Wei, B., Liu, B., Yuan, D., Mao, Y. and Yao, S., 2021. Spatiotemporal hybrid model for concrete arch dam deformation monitoring considering chaotic effect of residual series. Engineering Structures, 228, p.111488. https:// doi.org/10.1016/j.engstruct.2020.111488.

Downloads

Published

2025-03-15

How to Cite

نقش هوش مصنوعی و مدل‌های عددی برای ارزیابی و پیش‌بینی جامع سلامت سازه در مهندسی سد: مروری جامع و سیستماتیک. (2025). Development Engineering Conferences Center Articles Database, 2(6). https://pubs.bcnf.ir/index.php/Articles/article/view/499

Similar Articles

1-10 of 363

You may also start an advanced similarity search for this article.