سیستم تحویل داروی داربست نانوالیافی پلی کاپرولاکتون-ژلاتین- نانورس هیدروکسید دولایه ای برای درمان سرطان پوست ملانوما
Keywords:
هیدروکسید دولایه, پلی کاپرولاکتون, ژلاتین, هایمکرومونAbstract
هدف: امروزه استفاده از سیستم های دارورسانی بر پایه نانوذرات در جهت درمان سرطان گسترش پیدا کرده است بطوریکه کارایی درمان را تا حد زیادی بهبود بخشیده اند. هدف از این مطالعه سنتز داربست نانوالیافی هیدروکسید دولایه ای/ پلی کاپرولاکتون/ژلاتین(Polycaprolactone/Gelatin/Layered double hydroxide) ( PCL/GEL/LDH ) و سپس استفاده ار آن بمنظور تسهیل انتقال داروی 4-متیل 7-هیدروکسی کومارین(هایمکرومون) به سلول های سرطانی رده B16F10 تعریف شد. روش پژوهش: نانوهیبرید LDH/Hymecromone به روش هم رسوبی سنتز و سپس با محلول پلیمری PCL/GEL ترکیب و الکتروریسی شد. جهت مشخصه یابی، شناسایی فاز، مورفولوژی و ترکیب عنصری داربست مورد نظر به ترتیب از پراش اشعه ایکس، میکروسکوپ الکترونی روبشی و طیفسنجی پراش انرژی پرتو ایکس استفاده گردید. درنهایت میزان زنده مانی سلول ها با استفاده از تست MTT مورد بررسی قرار گرفت و در نهایت با میکروسکوپ کانفوکال رویت و تصویربرداری شد. یافته ها: نتایج مشخصه یابی نشان داد که نانوهیبرید LDH/Hymecromone به درستی سنتز شده و در داربست نانوالیافی قرار گرفته است. همچنین مشخص شد که گنجاندن نانوذرات LDH در داربست PCL/GEL استحکام مکانیکی و ازدیاد طول آن را در زمان شکست بهبود بخشیده است. نتایج MTT نشان داد که استفاده از داربست PCL/GEL/LDH/hymecromone اثر بیشتری از دارو بر روی سلول های سرطانی B16F10 نسبت استفاده از پودر دارو به تنهایی نشان میدهد. نتیجه گیری: به نظر می رسد که داربست های PCL/Gel/LDH با رهایش آهسته، مداوم و نیز محافظت از دارو در برابر تخریب می توانند کاندیدای مناسبی به عنوان سیستم دارورسانی باشند.
Downloads
References
1. Naves, L.B., Dhand, C., Venugopal, J.R. et al. Nanotechnology for the treatment of melanoma skin cancer. Prog Biomater 6, 13–26 (2017). https://doi.org/10.1007/s40204-017-0064-z
2. Barriera-Silvestrini P, Iacullo J, Knackstedt TJ. American joint committee on cancer staging and other platforms to assess prognosis and risk. Clin Plast Surg 2021;48(4):599-606. doi:10.1016/j.cps.2021.05.004
3. Saeidi, Z., et al. (2023). "Nanotechnology-Based Drug Delivery Systems in the Transdermal Treatment of Melanoma." Adv Pharm Bull 13(4): 646-662.
4. Saginala K, Barsouk A, Aluru JS, Rawla P, Barsouk A. Epidemiology of Melanoma. Med Sci (Basel) (2021) 9(4):63. doi: 10.3390/medsci9040063
5. Sabt, A.; Abdelhafez, O.M.; El-Haggar, R.S.; Madkour, H.M.F.; Eldehna, W.M.; El-Khrisy, E.E.A.M.; Abdel-Rahman, M.A.; Rashed, L.A. Novel coumarin-6-sulfonamides as apoptotic anti-proliferative agents: Synthesis, in vitro biological evaluation, and QSAR studies. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1095-1107. http://dx.doi.org 10.1080/14756366.2018.1477137 PMID: 29944015
6. Chuang, J-Y.; Huang, Y-F.; Lu, H-F.; Ho, H-C.; Yang, J-S.; Li, T-M.; Chang, N-W.; Chung, J-G. Coumarin induces cell cycle arrest and apoptosis in human cervical cancer HeLa cells through a mito-chondria- and caspase-3 dependent mechanism and NF-kappaB down-regulation. In Vivo, 2007, 21(6), 1003-1009. PMID: 18210747
7. Kimura, Y.; Sumiyoshi, M. Antitumor and antimetastatic actions of dihydroxycoumarins (esculetin or fraxetin) through the inhibition of M2 macrophage differentiation in tumor-associated macrophages and/or G1 arrest in tumor cells. Eur. J. Pharmacol., 2015, 746, 115-125. http://dx.doi.org/10.1016/j.ejphar.2014.10.048 PMID: 25445053
8. Lee, S.; Sivakumar, K.; Shin, W-S.; Xie, F.; Wang, Q. Synthesis and anti-angiogenesis activity of coumarin derivatives. Bioorg.Med. Chem. Lett., 2006, 16(17), 4596-4599. http://dx.doi.org/10.1016/j.bmcl.2006.06.007 PMID: 16793260
9. Yasser Fakri Mustafa,Noora Thamer Abdulaziz.Biological potentials of Hymecromone-based derivatives:A systematic review.Sys Rev Pharm 2020;11(11):438-452
10. Noora Thamer Abdulaziz, Yasser Fakri Mustafa,Anticancer properties of hymecromone-derived compounds: A review.ISSN 0975-2366 DOl: https://doi.org/10.31838/ijpr/2021.13.01.347
11. Kim, T., et al. (2023). "A 7-Hydroxy 4-Methylcoumarin Enhances Melanogenesis in B16-F10 Melanoma Cells." Molecules 28(7).
12. Zeng H, Li J, Hou K, Wu Y, Chen H, Ning Z. Melanoma and Nanotechnology-Based Treatment. Front Oncol. 2022 Mar 9;12:858185. doi: 10.3389/fonc.2022.858185. PMID: 35356202; PMCID: PMC8959641.
13. Malikmammadov, E.; Tanir, T.E.; Kiziltay, A.; Hasirci, V.; Hasirci, N. PCL and PCL-based materials in biomedical applications. J. Biomater. Sci. Polym. Ed. 2018, 29, 863–893[CrossRef][PubMed].
14. Amir-Reza Arvaneh, Mehdi Sadat-Shojai.Biodegradable Aliphatic Polyesters for Application in Tissue Engineering.Iran. J. Polym. Sci. Technol. (Persian), Vol. 34, No. 4, 319-348 October-November 2021 ISSN: 1016-3255 Online ISSN: 2008-0883 DOI: 10.22063/JIPST.2021.2929.2081
15. V. R. Sinha, K. Bansal, R. Kaushik, R. Kumria, and A. Trehan, Int. J. Pharm. 278, 1–23(2004), https://doi.org/10.1016/j.ijpharm.2004.01.044.
16. Hajiali, F., S. Tajbakhsh and A. Shojaei (2018). "Fabrication and properties of polycaprolactone composites containing calcium phosphate-based ceramics and bioactive glasses in bone tissue .207-4engineering: a review." Polymer reviews 58(1): 16
17. Liu, X.; Won, Y.; and Ma, P.X., Journal of Bio-medical Materials Research Part A. 74(1), 84-91, 2005
18. Bhavsar MD, Amiji MM (2008). "Development of novel biodegradable polymeric nanoparticles-in-microsphere formulation for local plasmid DNA delivery in the gastrointestinal tract". AAPS PharmSciTech. 9 (1): 288–94.
19. Y. Wan, X. Lu, S. Dalai, and J. Zhang, Thermochim. Acta 487, 33–38 (2009), https://doi.org/10.1016/j.tca.2009.01.007
20. Alihosseini, F. (2016). Plant-based compounds for antimicrobial textiles. antimicrobial textiles.Elsevier: 155-19
21. R. Ortega-Toro, G. Santagata, G. Gomez d’Ayala, P. Cerruti, P. T. Oliag, M.A. Chiralt Boix, and M. Malinconico, Carbohydr. Polym. 147, 16–27 (2016),https://doi.org/10.1016/j.carbpol.2016.03.070.
22. Oh, J. M., et al. (2011). "Intracellular drug delivery of layered double hydroxide nanoparticles." J Nanosci Nanotechnol 11(2): 1632-1635.
23. Xu, R., et al. (2023). "Recent Advances in Biodegradable and Biocompatible Synthetic Polymers Used in Skin Wound Healing." Materials (Basel) 16(15).
24. Santoro M, Tatara AM, Mikos AG.Gelatin carriers for drug and cell delivery in tissue engineering. J Control Release 2014;190:210-18 .. A review highlighting some of the latest studies performed on gelatin modifications for immune system evasion, drug stabilization and targeted delivery, as well as gelatin composite systems based on synthetic or natural polymers.
25. Young S, Wong M, Tabata Y, Mikos AG. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release 2005;109:256-74. A review describing gelatin as a carrier matrix for controlled release of bioactive molecules for several applications.
26. Wang H, Zou Q, Boerman OC, et al. Combined delivery of BMP-2 and bFGF from nanostructured colloidal gelatin gels and its effect on bone regeneration in vivo. J Control Release 2013;166:172-81
27. Kim YH, Furuya H, Tabata Y. Enhancement of bone regeneration by dual release of a macrophage recruitment agent and platelet-rich plasma from gelatin hydrogels. Biomaterials 2014;35:214-24
28. Madan J, Pandey RS, Jain UK, et al. Sterically stabilized gelatin microassemblies of noscapine enhance cytotoxicity, apoptosis and drug delivery in lung cancer cells. Colloids Surf B Biointerfaces 2013;107:235-44
29. Lee SJ, Yhee JY, Kim SH, et al. Biocompatible gelatin nanoparticles for tumor-targeted delivery of polymerized siRNA in tumor-bearing mice. J Control Release 2013;172:358-66
30. Kimura Y, Tabata Y. Controlled release of stromal-cell-derived factor-1 from gelatin hydrogels enhances angiogenesis.J Biomater Sci Polym Ed 2010;21:37-51
31. Saito T, Tabata Y. Preparation of gelatin hydrogels incorporating low-molecular-weight heparin for anti-fibrotic therapy. Acta Biomater 2012;8:646-52
32. Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL (2007) Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Del Rev. 59(14):1413–1493
33. Shyna, S.; Nair, P.D.; Thomas, L.V. A nonadherent chitosan-polyvinyl alcohol absorbent wound dressing prepared via controlled freeze-dry technology. Int. J. Biol. Macromol. 2020, 150, 129–140.
34. Pike RD (1999). Superfine microfiber nonwoven web. US Patent 5965883 A
35. Whilton NT, Vickers PJ, Mann S. Bioinorganic clays: synthesis and characterization of amino- and polyamino acid intercalated layered double hydroxides. J Mater Chem 1997;7(8):1623-9
36. Choy J-H, Kwak S-Y, Park J-S, Jeong Y-J. Cellular uptake behavior of [g-32P]. labeled ATP-LDH nanohybrids. J Mater Chem 2001;11(6):1671-4
37. Xu ZP, Zeng QH, Lu GQ, Yu AB. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci 2005;61(3):1027-40
38. Kriven WM, Kwak S-Y, Wallig MA, Choy J-H. Bio-resorbable nanoceramics for gene and drug delivery. MRS Bulletin 2004;29(1):33-7
39. Xu ZP, Niebert M, Porazik K, et al. Subcellular compartment targeting of layered double hydroxide nanoparticles. J Control Release 2008;130(1):86-94
40. Choy J-H, Kwak S-Y, Jeong Y-J, Park J-S. Inorganic layered double hydroxides as nonviral vectors. Angew Chemie Int Ed 2000;39(22):4042-5
41. Choy J-H, Kwak S-Y, Park J-S, et al. Intercalative nanohybrids of nucleoside monophosphates and DNA in layered metal hydroxide. J Am Chem Soc 1999;121(6):1399-400
42. W. Jin, D. Lee, Y. Jeon, D.-H. Park, Minerals 10, 172 (2020)
43. F. Lv, L. Xu, Y. Zhang, Z. Meng, ACS Appl. Mater. 7, 19104 (2015)
44. S. Senapati, R. Thakur, S.P. Verma, S. Duggal, D.P. Mishra, P. Das et al., J. Control Release 224, 186 (2016)
45. V.A. Shirin, R. Sankar, A.P. Johnson, H. Gangadharappa, K. Pramod, J. Control Release 330, 398–426 (2020)
46. A.K. Barui, R. Kotcherlakota, V.S. Bollu, S.K. Nethi, C.R. Patra, Biopolymer-Based Composites (Elsevier, New York, 2017), p. 325
47. S. Saha, S. Ray, R. Acharya, T.K. Chatterjee, J. Chakraborty, Appl. Clay Sci. 135, 493 (2017)
48. Ahmadi, S., et al. (2022). "Electrospun Nanofibrous Scaffolds of Polycaprolactone/Gelatin Reinforced with Layered Double Hydroxide Nanoclay for Nerve Tissue Engineering Applications." ACS Omega 7(32): 28351-28360.
49. Wong, Shing & Baji, Avinash & Leng, Siwei. (2008). Effect of fiber diameter on tensile properties of electrospun poly(??-caprolactone). Polymer. 49. 4713-4722. 10.1016/j.polymer.2008.08.022.
50. Talebi, et al. (2019). "Proliferation and differentiation of mouse spermatogonial stem cells on a three-dimensional surface composed of PCL/gel nanofibers." Int J Morphol 37 (3), 1132-1141, 2019ر
51. Semitela, A., et al. (2020). "Electrospinning of bioactive polycaprolactone-gelatin nanofibres with increased pore size for cartilage tissue engineering applications." J Biomater Appl 35(4-5): 471-484.
52. Rojas, R.; Mosconi, G.; Pablo, J.; Gil, G.A. Layered double hydroxide applications in biomedical implants. Appl. Clay Sci. 2022, 224, 106514.
53. Yu S, Choi G, Choy JH Multifunctional Layered Double Hydroxides for Drug Delivery and Imaging. anomaterials (Basel). 2023 Mar 19;13(6):1102. doi: 10.3390/nano13061102. PMID: 36985996; PMCID: PMC10058705
54. 53. Yang, J.; Wang, K.; Yu, D.G.; Yang, Y.; Bligh, S.W.A.; Williams, G.R. Electrospun Janus nanofibers loaded with a drug and inorganic nanoparticles as an effective antibacterial wound dressing. Mater. Sci. Eng. C 2020, 111, 110805. [CrossRef]
55. 54. Lv, H.; Guo, S.; Zhang, G.; He, W.; Wu, Y.; Yu, D.G. Electrospun structural hybrids of acyclovir-polyacrylonitrile at acyclovir for modifying drug release. Polymers 2021, 13, 4286. [CrossRef]
56. 55. Maestri, G.; Boemo, R.L.; Soares, L.D.A.; de Souza, A.A.U.; Immich, A.P.S. Development of drug reservoirs based on nanofibers and capsules for epistaxis treatment. J. Drug Deliv. Sci. Technol. 2020, 55, 101398. [CrossRef]
57. 56. Mohammed A. Al-Baadani, Kendrick Hii Ru Yie, Abdullrahman M. Al-Bishari, Bilal A. Alshobi, Zixin Zhou, Kai Fang, Binwei Dai, Yiding Shen, Jianfeng Ma, Jinsong Liu, Xinkun Shen, Co-electrospinning polycaprolactone/gelatin membrane as a tunable drug delivery system for bone tissue regeneration, Materials & Design, Volume 209, 2021, 109962, ISSN 0264-1275, https://doi.org/10.1016/j.matdes.2021.109962.
58. 57. Chakraborti, M., Jackson, J.K., Plackett, D. et al. The application of layered double hydroxide clay (LDH)-poly(lactide-co-glycolic acid) (PLGA) film composites for the controlled release of antibiotics. J Mater Sci: Mater Med 23, 1705–1713 (2012). https://doi.org/10.1007/s10856-012-4638-y
59. Khandwekar, A.P.; Patil, D.P.; Shouche, Y.; and Doble, M.; Journal of biomaterials applications. 26(2), 227-252, 2010.
60. Dhanaraju, M.D.; Gopinath, D.; Ahmed, M.R.; Jayakumar, R.; Vamsadhara, C. Characterization of polymeric poly(epsilon-caprolactone) injectable implant delivery system for the controlled delivery of contraceptive steroids. J. Biomed. Mater. Res. A 2006, 76, 63–72.
61. Sun H, Zhang H, Evans DG, et al. Synthesis and characterization of nanoscale magnetic drug-inorganic composites. Chin Sci Bulletin 2005;50(8):752-7
62. Zhu, Chaojie, Jiang, Jianping, Jia, Yingbo, Xu, Zhi Ping, and Zhang, Lingxiao (2023). Beyond drug delivery system: immunomodulatory layered double hydroxide nanoadjuvants take an essential step forward in cancer .immunotherapy. Accounts of Materials Research 4 (9) 758-771
63. 62. TY - CHAP AU - Govind Kumar Sharma AU - Nirmala Rachel James ED - Maaz Khan ED - Samson Jerold Samuel Chelladurai Y1 - 2022-08-23 PY - 2022 T1 - Electrospinning: The Technique and Applications - BT - Recent Developments in Nanofibers Research SP - Ch. 1 UR - https://doi.org/10.5772/intechopen.105804 DO - 10.5772/intechopen.105804 SN - 978-1-80356-387-9 PB - IntechOpen CY - Rijeka Y2 - 2024-11-15 ER –
64. 63. Bi, Xue & Zhang, Hui & Dou, Liguang. (2014). Layered Double Hydroxide-Based Nanocarriers for Drug Delivery. Pharmaceutics. 6. 298-332. 10.3390/pharmaceutics6020298.