نقش نانوذرات در کنترل بیوفیلم باکتریایی در پوسیدگی دندان
Keywords:
بیوفیلم, پوسیدگی دندان, نانوذراتAbstract
پوسيدگي دندان همچنان يك مسئله مهم بهداشت جهاني است که بدلیل مديريت پرهزينه آن، سلامت و كيفيت زندگي افراد، تحت تاثير قرار مي دهد. پوسيدگي دندان عمدتاً توسط تشكيل يك بيوفيلم خاص برروي سطح دندان ايجاد مي شود. بيوفيلیم بوجود آمده با تول اسيد و فرآيند دمينراليزاسيون روي سطح ميناي دندان به عنوان يك ضايعه لكه ایی سفيد ایجاد می نماید که پاتوژن هاي اصلي مسئول پوسيدگي دندان به شمار می آیند. این دسته از ارگانیسمها شامل: استرپتوکوکوس موتانس، میکروکوکوس لوتئوس، استافیلوکوکوس آرئوس، کاندیدا آلبیکنس و بسیاری ارگانیسمهای دیگر می باشند. از طرف دیگر، شكست درمان اندودنتيك مي تواند ناشي از عوامل مختلفي از جمله عفونت باكتريايي، كانال هاي ريشه اي كه به درستي تميز و پر نشده اند، مهر و موم معيوب و كانال هاي درمان نشده (كانال هاي از دست رفته) باشد و حضور ارگانیسمهایی مانند انتروکوکوس فیکالیس دربخش کانال ریشه تاثیر گذار باشد و از آنجاییکه ارگانیسم مقاومی به آنتی بیویکهاست بنابراین باعث عفونت طولانی مدت شود.بنابراین مواد مبتني بر فناوري نانو براي بهبود اين اقدامات درماني و پيشگيرانه در درمان بيماري هاي دهان ناشي از پوسيدگي دندان و عفونت هاي مرتبط با پريودنتيت در نظر گرفته مي شوند. برهمین اساس تحقیق حاضر به بحث بیوفیلم باکتریایی و ارتباط آن با پوسیدگی دندان و نقش نانوذرات در این حیطه پرداخته است.
Downloads
References
[1] De Stoppelaar JD, van HJ, Backer DO. The relationship between extracellular polysaccharide-producing streptococci and smooth surface caries in 13-year-old children. Caries Res 1969;3:190–9.
[1] Loesche WJ. Role of Streptococcus mutans in human dental decay. Microbiol Rev 1986;50:353–80.
[2] O’Reilly MM, Featherstone JDB. Demineralization and remi- neralization around orthodontic appliances: an in vivo study. Am J Orthod Dentofacial Orthop 1987;92:33–40.
[3] Ogaard B. Oral microbiological changes, long-term enamel alteration due to decalci cation, and caries prophylactic aspects. In Brantley WA, Eliades T, editors. Orthodontic materials. Scienti c and clinical aspects. Stuttgart: Thieme; 2001.
[4] Sukontapatipark W, El-Agroudi MA, Selliseth NJ, Thunold K, Selvig KA. Bacterial colonization associated with xed orthodontic appliances. A scanning electron microscopy study. Eur J Orthod 2001;23:475–84.
[5] Baehni PC, Takeuchi Y. Anti-plaque agents in the prevention of bio lm-associated oral diseases. Oral Dis 2003;9:23–9.
[5] Kerbusch AE, Kuijpers-Jagtman AM, Mulder J, Sanden WJ. Methods used for prevention of white spot lesion development during orthodontic treatment with xed appliances. Acta Odontol Scand 2012;70:564–8.
[6] Geiger AM, Gerolick L, Gwinnet AJ, Benson BJ. Reducing white spot lesions in orthodontic populations with uoride rinsing. Am J Orthod Dentofacial Orthop 1992;101:403–7.
[ 6] Schmit JL, Staley RN, Wefwl JS, Kanellis M, Jakobsen JR, Keenan PJ. Effect of uoride varnish on demineralization on adjacent to brackets bonded with RMGI cement. Am J Orthod Dentofacial Orthop 2002;122:125–34.
[7] Allaker RP. The use of nanoparticles to control oral bio lm formation. J Dent Res 2010;89:1175–86.
[8] Luo ML, Zhao JQ, Tang W, Pu S. Hydrophilic modi cation of poly(ether sulfone) ultra ltration membrane surface by self-assembly of TiO2 nanoparticles. Appl Surf Sci 2005; 249:76–84.
[8] Allaker RP. The use of nanoparticles to control oral bio lm formation. J Dent Res 2010;89:1175–86.
[9] Cao B, Wang Y, Li N, Liu B, Zhang Y. Preparation of an orthodontic bracket coated with an nitrogen-doped TiO2- xNy thin lm and examination of its antimicrobial perfor- mance. Dent Mater J 2013;32:311–16.
[10] Vahid-Dastjerdie E, Borzabadi-Farahani A, Pourmo di-- Neistanak H, Amini N. An in-vitro assessment of weekly cumulative uoride release from three glass ionomer cements used for orthodontic banding. Prog Orthod 2012;13:49–56.
[11] Cohen WJ, Wiltshire WA, Dawes C, Lavelle CL. Long-term in vitro uoride release and rerelease from orthodontic bond- ing materials containing uoride. Am J Orthod Dentofacial Orthop 2003;124:571–6.
[12] Lin J, Zhu J, Gu X, Wen W, Li Q, Fischer-Brandies H, et al. Effects of incorporation of nano- uorapatite or nano- uorohydroxyapatite on a resin-modi ed glass ionomer cement. Acta Biomater 2011;7:1346–53.
[13] Reynolds IR. A review of direct orthodontic bonding. Br J Orthod 1975;2:171–8.
[14] Enan ET, Hammad SM. Microleakage under orthodontic bands cemented with nano-hydroxyapatite-modi ed glass ionomer. Angle Orthod 2013;doi:10.2319/022013–147.1.
[15] Lim BS, Lee SJ, Lee JW, Ahn SJ. Quantitative analysis of adhesion of cariogenic streptococci to orthodontic raw mate- rials. Am J Orthod Dentofacial Orthop 2008;133:882–6.
[16] Ahn SJ, Lee SJ, Kook JK, Lim BS. Experimental antimicrobial orthodontic adhesives using nano llers and silver nanoparti- cles. Dent mater 2009;25:206–13.
[17] Uysal T, Yagci A, Uysal B, Akdogan G. Are nano-composites and nano-ionomers suitable for orthodontic bracket bonding? Eur J Orthod 2010;32:78–82. Anti-caries/antimicrobial nanoparticles in orthodontics 5
[17] Pai SS, Nagendra A, Pai VS, Neelima K, Vishwanath AE, Vinod P, et al. Evaluation of a new nano- lled bonding agent for bonding orthodontic brackets as compared to a conven- tional bonding agent: an in vitro study. J Indian Orthod Soc 2012;46:329–33.
[18] Monteiro DR, Gorup LF, Takamiya AS, Ruvollo–Filho AC, de Camargo ER, Barbosa DB. Hanie, [Feb 2, 2025 at 22:30] The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents 2009;34:103–10.
[19] Hernández-Sierra JF, Ruiz F, Pena DC, Martínez-Gutiérrez F, Martínez AE, Guillén Ade J, et al. The antimicrobial sensi- tivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine 2008;4:237–40
[20] Yamamoto K, Ohashi S, Aono M, Kokubo T, Yamada I, Yamauchi J. Antibacterial activity of silver ions implanted in SiO2 ller on oral streptococci. Dent Mater 1996;12: 227–9.
[21] Poosti M, Ramazanzadeh B, Zebarjad M, Javadzadeh P, Naderinasab M, Shakeri MT. Shear bond strength and anti- bacterial effects of orthodontic composite containing TiO2 nanoparticles. Eur J Orthod 2013;35:676–9.
[22] Radford DR, Challacombe SJ, Walter JD. Denture plaque and adherence of Candida albicans to denture-base materials in vivo and in vitro. Crit Rev Oral Biol Med 1999;10:99–116.
[23] Monteiro DR, Gorup LF, Takamiya AS, de Camargo ER, Filho AC, Barbosa DB. Silver distribution and release from an antimicrobial denture base resin containing silver colloidal nanoparticles. J Prosthodont 2012;21:7–15.
[24] Spampinato C, Leonardi D. Candida infections, causes, tar- gets, and resistance mechanisms: traditional and alternative antifungal agents. Biomed Res Int 2013;2013:204237.
[25] Hibino K, Wong RW, Hägg U, Samaranayake LP. The effects of orthodontic appliances on Candida in the human mouth. Int J Paediatr Dent 2009;19:301–8.
[26] Arendorf TM, Addy M. Candidal carriage and plaque distri- bution before, during and after removable orthodontic appli- ance therapy. J Clin Periodontol 1985;12:360–8.
[27] Pithon MM, dos Santos RL, Alviano WS, de Oliveira Ruellas AC, de Souza Araújo MT. Quantitative assessment of S. mutans and C. albicans in patients with Haas and Hyrax expanders. Dental Press J Orthod 2012;17:21.e1–6.
[28] Acosta-Torres LS, Mendieta I, Nuñez-Anita RE, Cajero- Juárez M, Castaño VM. Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures. Int J Nano- medicine 2012;7:4777–86.
[29] Sodagar A, Kassaee MZ, Akhavan A, Javadi N, Arab S, Kharazifard MJ. Effect of silver nano particles on exural strength of acrylic resins. J Prosthodont Res 2012;56:120–4.
[30] Yen HJ, Hsu SH, Tsai CL. Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small 2009;5:1553–61.