هوش مصنوعی ، ابزاری قدرتمند در توسعه و ارتقاء رقابت پذیری صنایع پتروشیمی
Keywords:
هوش مصنوعی, یادگیری ماشین, صنایع پتروشیمی, توسعه محصولات, رقابت پذیریAbstract
صنعت پتروشیمی یک حوزه به سرعت در حال توسعه است و تبعا با پیشرفت فناوری و تغییر نیازهای صنعت، چالشها و راهحلهای جدیدی پدیدار خواهد شد. بنابراین مطالعات و تحقیقات روزآمد بسیار مهم است. بهره گیری از فناوری های پیشرفته مانند هوش مصنوعی، تجزیه و تحلیل داده های بزرگ، اینترنت اشیاء، و سیستم های فیزیکی - سایبری ، فرصتی منحصر به فرد برای بهینه سازی و تغییر تولیدات و غلبه بر چالش های نو ظهور در صنعت پتروشیمی ارائه می کند. در این مقاله تلاش شده است این ضرورت و البته چالش ها و فرصت هایی که ممکن است در حوزه هوش مصنوعی در صنعت پتروشیمی با آن مواجه گردیم ، تبیین و به آن پرداخته شود.
Downloads
References
1. DOZIE, E. A., JOHNSON, N., ANDREW, N. H., & JUSTINE, A. C. (2023). Revolutionizing Petrochemical Production: Unleashing the Full Potential of Industry 4.0 to Drive Efficiency, Harness Reserve and Propel Innovation.
2. Min, Q., Lu, Y., Liu, Z., Su, C., & Wang, B. (2019). Machine learning based digital twin framework for production optimization in petrochemical industry. International Journal of Information Management, 49, 502-519.
3. Raj Shah, A. M. P. “AI-Powered Analysis in the Petrochemical Industry: Balancing Demand with Sustainability”.https://www.linkedin.com/pulse/ai-powered-analysis-petrochemical-industry-balancing-amirtharaj-hcy4c
6. Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O., & Walsh, A. (2018). Machine learning for molecular and materials science. Nature, 559(7715), 547-555.
7. Xu, Y., Liu, X., Cao, X., Huang, C., Liu, E., Qian, S., ... & Zhang, J. (2021). Artificial intelligence: A powerful paradigm for scientific research. The Innovation, 2(4)..
8. Samuel, A. L. (2000). Some studies in machine learning using the game of checkers. IBM Journal of research and development, 44(1.2), 206-226.
9. Dey, A. (2016). ML algorithms: a review. Int J Comput Sci Inform Technol, 7(3), 1174-1179.
10. Taye, M. M. (2023). Understanding of machine learning with deep learning: architectures, workflow, applications and future directions. Computers, 12(5), 91.
11. Keles, E., & Bagci, U. (2023). The past, current, and future of neonatal intensive care units with artificial intelligence: a systematic review. NPJ Digital Medicine, 6(1), 220.
12. https://pythongeeks.org/deep-learning-vs-machine-learning
13. Géron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2019.
14. Burkov, A. (2019). The hundred-page machine learning book (Vol. 1, p. 32). Quebec City, QC, Canada: Andriy Burkov.
15. Aliyu, R., Mokhtar, A. A., & Hussin, H. (2022). Prognostic health management of pumps using artificial intelligence in the oil and gas sector: a review. Applied Sciences, 12(22), 11691.
17. 17. Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future generation computer systems, 29(7), 1645-1660.
18. Yang, C., Shen, W., & Wang, X. (2018). The internet of things in manufacturing: Key issues and potential applications. IEEE Systems, Man, and Cybernetics Magazine, 4(1), 6-15.
19. Severi, S., Sottile, F., Abreu, G., Pastrone, C., Spirito, M., & Berens, F. (2014). M2M technologies: Enablers for a pervasive Internet of Things. In 2014 European Conference on Networks and Communications (EuCNC) (pp. 1-5). IEEE.
20. Ersue, M., Romascanu, D., Schoenwaelder, J., & Sehgal, A. (2015). Management of networks with constrained devices: use cases (No. rfc7548).
25. https://energynow.com/2024/03/energy-industry-upgrade-using-artificial-intelligence
26. https://www.anybotics.com/news/anymal-robots-inspecting-petronas-offshore-platform
27. Mitsui Chemicals Teams up With NEC and dotData to Trial AI-Based Price Change Forecasting for Market-Sensitive Products. Retrieved from:https://eu.mitsuichemicals.com/release/2021/2021_0924.htm, 19.01.2023.
28. Laska, M., & Karwala, I. (2023). Artificial intelligence in the chemical industry–risks and opportunities. Zeszyty Naukowe. Organizacja i Zarządzanie/Politechnika Śląska.
29. The Power of Artificial Intelligence in Chemical Engineering,https://www.process-worldwide.com/the-power-of-artificial-intelligence-in-chemical-engineering-a-b0d90622124e6a2eab9275a73577d9c4/
30. Mohammadi, S., Sulaimany, S., & Mafakheri, A. (2023). Artificial Intelligence for Predictive Analytics in the Petrochemical Industry: A Scoping Review. Modeling and Simulation in Electrical and Electronics Engineering, 3(1), 7-12.
31. Noah M.(2023). Applications of artificial intelligence in chemical engineering. J Chem Tech App.;6(3):153
32. Z. Geng, Q. Meng, Y. Han, Q. Wei, Z. Ouyang, in Proc. of 2019 IEEE 8th Data Driven Control and Learning Systems Conf. (DDCLS’19), IEEE,Piscataway, NJ 2019, pp. 708–712.
33. Zhang, Z., Wu, Z., Rincon, D., & Christofides, P. D. (2019). Real-time optimization and control of nonlinear processes using machine learning. Mathematics, 7(10), 890.
34. Trinh, C., Meimaroglou, D., & Hoppe, S. (2021). Machine learning in chemical product engineering: The state of the art and a guide for newcomers. Processes, 9(8), 1456.
36. https://blog.agchemigroup.eu/how-ai-really-benefits-industrial-chemical-production-and-supply/
37. Naik, D. V., Karthik, V., Kumar, V., Prasad, B., & Garg, M. O. (2017). Kinetic modeling for catalytic cracking of pyrolysis oils with VGO in a FCC unit. Chemical Engineering Science, 170, 790-798.
38. Gharahbagheri, H., Imtiaz, S. A., & Khan, F. (2017). Root cause diagnosis of process fault using KPCA and Bayesian network. Industrial & Engineering Chemistry Research, 56(8), 2054-2070.
39. Yang, F., Xu, M., Lei, W., & Lv, J. (2023). Artificial intelligence methods applied to catalytic cracking processes. Big Data Mining and Analytics, 6(3), 361-380.
40. Zare Abiane H, Bayat Varkeshi M, Bayat Varkeshi J. (2013). Evaluation of ekbatan wastewater treatment plant using artificial neural network. J of Envirology. 38(3):85-98. (In Persian)
41. Water pollution Control. New york: Mc Graw–Hill. 1989; 2:189-193
42. Hamed, M. Khalafallah, M.G. Hassanein, E.A. (2004). Prediction of wastewater treatment plant
performance using artificial neural network. Environmental Modeling and Software. Vol 19, pp: 919–928.
43. Hong, Y.T. Rosen, M.R. Bhamidimarri, R. (2003). Analysis of a municipal wastewater treatment plant using a neural network-based pattern analysis.Water Research, Vol 37, pp: 1608–1618.
44. Mazloom, M. S., Rezaei, F., Hemmati-Sarapardeh, A., Husein, M. M., Zendehboudi, S., & Bemani, A. (2020). Artificial intelligence based methods for asphaltenes adsorption by nanocomposites: Application of group method of data handling, least squares support vector machine, and artificial neural networks. Nanomaterials, 10(5), 890.
45. Jagtap, S., Skouteris, G., Choudhari, V., & Rahimifard, S. (2022). Improving water efficiency in the beverage industry with the internet of things. In Implementing Data Analytics and Architectures for Next Generation Wireless Communications (pp. 18-26). IGI Global.
46. Nagpal, M., Siddique, M. A., Sharma, K., Sharma, N., & Mittal, A. (2024). Optimizing wastewater treatment through artificial intelligence: recent advances and future prospects. Water Science & Technology, 90(3), 731-757.
47. Alprol, A. E., Mansour, A. T., Ibrahim, M. E. E. D., & Ashour, M. (2024). Artificial Intelligence Technologies Revolutionizing Wastewater Treatment: Current Trends and Future Prospective. Water, 16(2), 314.
48. Aliyu, R., Mokhtar, A. A., & Hussin, H. (2022). Prognostic Health Management of Pumps Using Artificial Intelligence in the Oil and Gas Sector: A Review. Applied Sciences, 12(22), 11691.
49. Li, J., Zhou, Y., Yao, J., & Liu, X. (2021). An empirical investigation of trust in AI in a Chinese petrochemical enterprise based on institutional theory. Scientific Reports, 11(1), 13564.
50. Schwaller P, Vaucher AC, Laino T. Prediction of chemical reaction yields using deep learning. Mach Learn SciTechnol. 2021;2(1):015016
51. https://www.gevernova.com/software/blog/how-ai-accelerating-energy-transition-and-carbon-negative
52. Degot, C., Duranton, S., Frédeau, M., & Hutchinson, R. (2021). Reduce Carbon and Costs with the Power of AI. Boston Consulting Group.
53. Q. He, H. Zheng, X. Ma, L. Wang, H. Kong, Z. Zhu, Artificial intelligence application in a renewable energy-driven desalination system: a critical review, Energy AI 7 (2022) 100123, https://doi.org/10.1016/j.egyai.2021.100123.
54. Shah, M., Kshirsagar, A., & Panchal, J. (2022). Applications of Artificial Intelligence (AI) and Machine Learning (ML) in the Petroleum Industry. CRC Press.
55. Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D., Hernández-Lobato, J. M., Sánchez-Lengeling, B., Sheberla, D., ... & Aspuru-Guzik, A. (2018). Automatic chemical design using a data-driven continuous representation of molecules. ACS central science, 4(2), 268-276.
56. Windmann, A., Wittenberg, P., Schieseck, M., & Niggemann, O. (2024). Artificial Intelligence in Industry 4.0: A Review of Integration Challenges for Industrial Systems. arXiv preprint arXiv:2405.18580.
57. Faubel, L., Schmid, K., & Eichelberger, H. (2023). MLOps Challenges in Industry 4.0. SN Computer Science, 4(6), 828.
58. A. Bécue, A., Praça, I., & Gama, J. (2021). Artificial intelligence, cyber-threats and Industry 4.0: Challenges and opportunities. Artificial Intelligence Review, 54(5), 3849-3886.
59. Alenizi, F. A., Abbasi, S., Mohammed, A. H., & Rahmani, A. M. (2023). The artificial intelligence technologies in Industry 4.0: A taxonomy, approaches, and future directions. Computers & Industrial Engineering, 109662.,
60. Zhou, K., Liu, T., & Zhou, L. (2015, August). Industry 4.0: Towards future industrial opportunities and challenges. In 2015 12th International conference on fuzzy systems and knowledge discovery (FSKD) (pp. 2147-2152). IEEE.
61. Gabsi, A. E. H. (2024). Integrating artificial intelligence in industry 4.0: insights, challenges, and future prospects–a literature review. Annals of Operations Research, 1-28.
62. Peres, R. S., Jia, X., Lee, J., Sun, K., Colombo, A. W., & Barata, J. (2020). Industrial artificial intelligence in industry 4.0-systematic review, challenges and outlook. IEEE access, 8, 220121-220139.
63. Bajic, B., Cosic, I., Lazarevic, M., Sremcev, N., & Rikalovic, A. (2018). Machine learning techniques for smart manufacturing: Applications and challenges in industry 4.0. Department of Industrial Engineering and Management Novi Sad, Serbia, 29, 18.
64. He, X., Zhao, K., & Chu, X. (2021). AutoML: A survey of the state-of-the-art. Knowledge-based systems, 212,106622.
65. Machado, C. G., Winroth, M., Carlsson, D., Almström, P., Centerholt, V., & Hallin, M. (2019). Industry 4.0 readiness in manufacturing companies: Challenges and enablers towards increased digitalization. Procedia Cirp, 81, 1113-1118.
66. Chen, T., Sampath, V., May, M. C., Shan, S., Jorg, O. J., Aguilar Martín, J. J., ... & Calaon, M. (2023). Machine learning in manufacturing towards industry 4.0: From ‘for now’to ‘four-know’. Applied Sciences, 13(3), 1903.
67. Jagatheesaperumal, S. K., Rahouti, M., Ahmad, K., Al-Fuqaha, A., & Guizani, M. (2021). The duo of artificial intelligence and big data for industry 4.0: Applications, techniques, challenges, and future research directions. IEEE Internet of Things Journal, 9(15), 12861-12885.
68. Xu, J., Kovatsch, M., Mattern, D., Mazza, F., Harasic, M., Paschke, A., & Lucia, S. (2022). A review on AI for smart manufacturing: Deep learning challenges and solutions. Applied Sciences, 12(16), 8239.
69. WEF and BCG, “Using AI in Industrial Operations Guidebook,” World Economic Forum (WEF) and Boston Consulting Group (BCG), Tech. Rep., 2023. [Online]. Available: https://www3.weforum.org/
docs/WEF_Harnessing_the_AI_Revolution_in_Industrial_Operations_2023.pdf
70. Jan, Z., Ahamed, F., Mayer, W., Patel, N., Grossmann, G., Stumptner, M., & Kuusk, A. (2023). Artificial intelligence for industry 4.0: Systematic review of applications, challenges, and opportunities. Expert Systems with Applications, 216, 119456.
71. Ishikawa, F., & Yoshioka, N. (2019, May). How do engineers perceive difficulties in engineering of machine-learning systems?-questionnaire survey. In 2019 IEEE/ACM Joint 7th International Workshop on Conducting Empirical Studies in Industry (CESI) and 6th International Workshop on Software Engineering Research and Industrial Practice (SER&IP) (pp. 2-9). IEEE.
72. EASA, “EASA Concept Paper: First usable guidance for level 1 & 2 machine learning applications,”
European Union Aviation Safety Agency (EASA), Tech. Rep., 2023.
73. Kuwajima, H., Yasuoka, H., & Nakae, T. (2020). Engineering problems in machine learning systems. Machine Learning, 109(5), 1103-1126.
74. Perez-Cerrolaza, J., Abella, J., Borg, M., Donzella, C., Cerquides, J., Cazorla, F. J., ... & Flores, J. L. (2024). Artificial intelligence for safety-critical systems in industrial and transportation domains: A survey. ACM Computing Surveys, 56(7), 1-40.
75. https://anchinv.com/how-can-ai-integration-help-the-petrochemical-industry