The subacute toxicity of silver nanoparticles on some immunology and physiology responses in Shabut (Tor grypus)

Authors

  • Takavar Mohammadian Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran Author
  • Taravat Molayemraftar Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran Author
  • Mehrzad mesbah Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Ira Author
  • Maryam Azodi Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran Author

DOI:

https://doi.org/10.5281/zenodo.17058220

Keywords:

immunology, physiology responses, silver nanoparticles, Tor grypus

Abstract

The present study aimed to determine the acute and subacute toxicity and evaluate the effects of subacute concentrations (10%, 20%, 40%, and 80% of 96-h lethal concentration 50 of nanoparticles silver; 0.0 as control, 0.012, 0.025, 0.05, and 0.101 mg/L) of silver nanoparticles on some immunology and physiology responses of Shabut (Tor grypus) after 0, 7, 14, 21, and 28 days of exposure. The results showed that the total white blood cell counts and lysozyme activity were significantly higher in silver nanoparticle-exposed groups (P<0.05). The hemoglobin values in 10% and serum bactericidal in 20% and 40% of 96-h lethal concentration 50 of silver nanoparticles exposed groups were significantly higher compared to the control group (P<0.05). A significant increase was observed in the serum levels of alanine aminotransferase in the 40% and 80% silver nanoparticles exposed groups (P<0.05). Aspartate aminotransferase levels in the 10% silver nanoparticles exposed group were significantly higher compared to the control group (P<0.05). Results suggest that silver nanoparticles induce alterations in the serum biochemical and immunology parameters and stress responses in Shabut (Tor grypus).

Downloads

Download data is not yet available.

Author Biographies

  • Takavar Mohammadian, Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran

       

  • Taravat Molayemraftar, Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran

      

  • Mehrzad mesbah, Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Ira

       

  • Maryam Azodi , Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran

      

References

[1] Benn, T.M. and Westerhoff, P. (2008). Nanoparticle silver released into water from commercially available sock fabrics. Environmental Science & Technology, vol. 42, p. 4133-4139. https://doi.org/10.1021/es801501j

[2] Sotiriou, G.A. and Pratsinis, S.E. (2010). Antibacterial activity of nanosilver ions and particles. Environmental Science & Technology, vol. 44, p. 5649-5654. https://doi.org/10.1021/es101072s

[3] Zhang, C., Hu, Z., Deng, B. (2016). Silver nanoparticles in aquatic environments: Physicochemical behavior and antimicrobial mechanisms. Water Research, vol. 88, p. 403-427. https://doi.org/10.1016/j.watres.2015.10.025

[4] Khosravi-Katuli, K., Prato, E., Lofrano, G., Guida, M., Vale, G., Libralato, G. (2017). Effects of nanoparticles in species of aquaculture interest. Environmental Science and Pollution Research, vol. 24, no. 21, p. 17326-17346. https://doi.org/10.1007/s11356-017-9360-3

[5] Chen, X. and Schluesener, H. (2008). Nanosilver: a nanoproduct in medical application. Toxicology Letters, vol. 176, p. 1-12. https://doi.org/10.1016/j.toxlet.2007.10.004

[6] Fabrega, J., Luoma, S.N., Tyler, C.R., Galloway, T.S., Lead, J.R. (2011). Silver nanoparticles: behaviour and effects in the aquatic environment. Environment International, vol. 37, p. 517-531. https://doi.org/10.1016/j.envint.2010.10.012

[7] Nowack, B. and Bucheli, T.D. (2007). Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution, vol. 150, p. 5-22. https://doi.org/10.1016/j.envpol.2007.06.006

[8] Jeong, Y.K., Bang, S.R., Oh, S.T. (2016). Synthesis and consolidation of nano-sized Cu coated S i C powders by a chemical method and spark plasma sintering. Journal of Nanoscience and Nanotechnology, vol. 16, p. 1993-1995. https://doi.org/10.1166/jnn.2016.11957.

[9] Kim, C.E., Rahimi, R.M., Hightower, N., Mastorakos, I., Bahr, D.F. (2018). Synthesis, microstructure, and mechanical properties of polycrystalline Cu nano-foam. MRS Advances, vol. 3, no. 466-472. https://doi.org/10.1557/adv.2018.128

[10] Liu, Y.L., Wu, Q.S., Zhao, Y.P. (2017). Biomimetic synthesis of Ag3PO4-NPs/Cu-NWs with visible-light-enhanced photocatalytic activity for degradation of the antibiotic ciprofloxacin. Journal of the Chemical Society Dalton Transactions, vol. 46, p. 6425-6432. https://doi.org/10.1039/c6dt04656h.

[11] Ostovan, A., Asadollahzadeh, H., Ghaedi, M. (2018). Ultrasonically synthesis of Mn- and Cu- @ ZnS-NPs-AC based ultrasound assisted extraction procedure and validation of a spectrophotometric method for a rapid preconcentration of Allura Red AC (E129) in food and water samples. Ultrasonics Sonochemistry, vol. 43, no. 52-60. https://doi.org/10.1016/j.ultsonch.2018.01.002.

[12] Patil, S.A., Ryu, C.H., Kim, H.S. (2018). Synthesis and characterization of copper nanoparticles (Cu-Nps) using rongalite as reducing agent and photonic sintering of Cu-Nps ink for printed electronics. International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 5, no. 239-245. https://doi.org/10.1007/s40684-018-0024-7

[13] Rahman, L.H.A., Abu-Dief, A.M., El-Khatib, R.M., Abdel-Fatah, S.M., Adam, A.M., Ibrahim, E.M.M. (2017). Sonochemical synthesis, structural inspection and semiconductor behavior of three new nano sized Cu(II), Co(II) and Ni(II) chelates based on tri-dentate NOO imine ligand as precursors for metal oxides. Applied Organometallic Chemistry, vol. 32, no. 3, p. e4174. https://doi.org/10.1002/aoc.4174

[14] Laban, G., Nies, L.F., Turco, R.F., Bickham, J.W., Sepúlveda, M.S. (2010). The effects of silver nanoparticles on fathead minnow (Pimephales promelas) embryos. Ecotoxicology, vol. 19, p. 185-195. https://doi.org/10.1007/s10646-009-0404-4

[15] Can, E., Kizak, V., Kayim, M., Can, S.S., Kutlu, B., Ates, M., Kocabas, M., Demirtas, N. (2011). Nanotechnological Applications in Aquaculture-Seafood Industries and Adverse Effects of Nanoparticles on Environment. Journal of Materials Science and Engineering, vol. 5, p. 605-609.

[16] Kaegi, R., Ulrich, A., Sinnet, B., Vonbank, R., Wichser, A., Zuleeg, S., Simmler, H., Brunner, S., Vonmont, H., Burkhardt, M. (2008). Synthetic TiO< sub> 2 nanoparticle emission from exterior facades into the aquatic environment. Environmental Pollution, vol. 156, p. 233-239. https://doi.org/10.1016/j.envpol.2008.08.004

[17] Farmen, E., Mikkelsen, H., Evensen, Ø., Einset, J., Heier, L., Rosseland, B., Salbu, B., Tollefsen, K., Oughton, D. (2012). Acute and sub-lethal effects in juvenile Atlantic salmon exposed to low μg/L concentrations of Ag nanoparticles. Aquatic Toxicology, vol. 108, no. 78-84. https://doi.org/10.1016/j.aquatox.2011.07.007

[18] Depledge, M., Aagaard, A., Györkös, P. (1995). Assessment of trace metal toxicity using molecular, physiological and behavioural biomarkers. Marine Pollution Bulletin, vol. 31, p. 19-27. https://doi.org/10.1016/0025-326X(95)00006-9

[19] Olgunoglu, I.A., Olgunoglu, M.P., Artar, E. (2011). Seasonal changes in biochemical composition and meat yield of Shabut (Tor grypus, Heckel 1843). Iranian Journal of Fisheries Sciences, vol. 10, no. 181-187.

[20] Asghari, S., Johari, S.A., Lee, J.H., Kim, Y.S., Jeon, Y.B., Choi, H.J., Moon, M.C., Yu, I.J. (2012). Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. Journal of Nanobiotechnology, vol. 10, no. 10-14. https://doi.org/10.1186/1477-3155-10-14

[21] Embry, M.R., Belanger, S.E., Braunbeck, T.A., Galay-Burgos, M., Halder, M., Hinton, D.E., Léonard, M.A., Lillicrap, A., Norberg-King, T., Whale, G. (2010). The fish embryo toxicity test as an animal alternative method in hazard and risk assessment and scientific research. Aquatic Toxicology, vol. 97, no. 79-87. https://doi.org/10.1016/j.aquatox.2009.12.008

[22] Hotos, G. and Vlahos, N. (1998). Salinity tolerance of Mugil cephalus and Chelon labrosus (Pisces: Mugilidae) fry in experimental conditions. Aquaculture, vol. 167, no. 329-338. https://doi.org/10.1016/S0044-8486(98)00314-7

[23] Finney, D.J. (1947). Probit analysis; a statistical treatment of the sigmoid response curve.

[24] Boudou, A. and Ribeyre, F. (1997). Aquatic ecotoxicology: from the ecosystem to the cellular and molecular levels. Environmental Health Perspectives, vol. 105, no. 21-35. https://doi.org/10.1289/ehp.97105s121

[25] Blaxhall, P. and Daisley, K. (1973). Routine haematological methods for use with fish blood. Journal of Fish Biology, vol. 5, p. 771-781. https://doi.org/10.1111/j.1095-8649.1973.tb04510.x

[26] Misra, C.K., Das, B.K., Mukherjee, S.C., Pattnaik, P. (2006). Effect of long term administration of dietary β-glucan on immunity, growth and survival of Labeo rohita fingerlings. Aquaculture, vol. 255, no. 82-94. https://doi.org/10.1016/j.aquaculture.2005.12.009

[27] Ellis, A. (2001). Innate host defense mechanisms of fish against viruses and bacteria. Developmental & Comparative Immunology, vol, 25, no. 827-839. https://doi.org/10.1016/S0145-305X(01)00038-6

[28] Shaluei, F., Hedayati, A., Jahanbakhshi, A., Kolangi, H., Fotovat, M. (2013). Effect of subacute exposure to silver nanoparticle on some hematological and plasma biochemical indices in silver carp (Hypophthalmichthys molitrix). Hum Exp Toxicol, vol. 32, no. 12, p. 1270-7. https://doi.org/10.1177/0960327113485258

[29] Mekkawy, I.M., Mahmoud, U.M., Hana, M.N., Sayed, A.E.H. (2019). Cytotoxic and hemotoxic effects of silver nanoparticles on the African Catfish, Clarias gariepinus (Burchell, 1822). Ecotoxicology and Environmental Safety, vol. 171, p. 638-646. https://doi.org/10.1016/j.ecoenv.2019.01.011

[30] Kori-Siakpere, O., Oghoghene, U.E. (2008). Sublethal haematological effects of zinc on the freshwater fish, Heteroclarias sp. (Osteichthyes: Clariidae). African Journal of Biotechnology, vol. 7, p. 2068-2073. https://doi.org/10.5897/AJB07.706

[31] Kori-Siakpere, O., Ake, J.E.G., Avworo, U.M. (2006). Sublethal Effects of Cadmium on Some Selected Haematological Parameters of Heteroclarias (A Hybrid of Heterobranchus bidorsalis and Clarias gariepinus). Int J Zool Res, vol. 2, no. 1, p. 77-83. http://dx.doi.org/10.3923/ijzr.2006.77.83

[32] Imani, M., Halimi, M., Khara, H. (2015). Effects of silver nanoparticles (AgNPs) on hematological parameters of rainbow trout, Oncorhynchus mykiss. Comparative Clinical Pathology, vol. 24, p. 491-495. https://doi.org/10.1007/s00580-014-1927-5

[33] Atamanalp, M., Aksakal, E., Kocaman, E.M., Ucar, A., Şisman, T., Turkez, H. (2011). The alterations in the hematological parameters of rainbow trout, Oncorhynchus mykiss, exposed to cobalt chloride. KAFKAS ÜNİVERSİTESİ VETERİNER FAKÜLTESİ DERGİSİ, vol. 17, p. S73–S76.

[34] Panacek, A., Kvítek, L., Prucek, R., Kolar, M., Veerová, R., Pizurova, N., Sharma, V.K., Tatjana, N., Zboril, R. (2006). Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. The Journal of Physical Chemistry B, vol. 110, p. 16248-16253. https://doi.org/10.1021/jp063826h

[35] Shahverdi, A.R., Fakhimi, A., Shahverdi, H.R., Minaian, S. (2007). Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine, vol. 3, p. 168-171. https://doi.org/10.1016/j.nano.2007.02.001

[36] Kumar, P., Senthamil Selvi, S., Lakshmi Prabha, A., Selvaraj, M., Macklin Rani, L., Suganthi, P., Devi, S., Govindaraju, M. (2012). Antibacterial activity and in-vitro cytotoxicity assay against brine shrimp using silver nanoparticles synthesized from Sargassum ilicifolium. Digest Journal of Nanomaterials and Biostructures, vol. 7, no. 4, p. 1447-1455.

[37] Ahamed, M., Posgai, R., Gorey, T.J., Nielsen, M., Hussain, S.M., Rowe, J.J. (2010). Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicology and Applied Pharmacology, vol. 242, p. 263–269. https://doi.org/10.1016/j.taap.2009.10.016

[38] Sawosz, E., Chwalibog, A., Mitura, K., Mitura, S., Aw Szeliga, J., Niemiec, T., Rupiewicz, M., Grodzik, M., Sokolwska, A. (2011). Visualisation of morphological interaction of diamond and silver nanoparticles with Salmonella enteritidis and Listeria monocytogenes. Journal of Nanoscience and Nanotechnology, vol. 11, p. 7635-7641. https://doi.org/10.1166/jnn.2011.4735

[39] Saurabh, S., Sahoo, P. (2008). Lysozyme: an important defence molecule of fish innate immune system. Aquaculture Research, vol. 39, no. 223-39. https://doi.org/10.1111/j.1365-2109.2007.01883.x

[40] Wang, T., Wen, X., Hu, Y., Zhang, X., Wanga, D., Yin, Sh. (2019). Copper nanoparticles induced oxidation stress, cell apoptosis and immune response in the liver of juvenile Takifugu fasciatus. Fish and Shellfish Immunology, vol. 84, p. 648-655. https://doi.org/10.1016/j.fsi.2018.10.053

[41] Monfared, A.L., Bahrami, A.M., Hosseini, E., Soltani, S., Shaddel, M. (2015). Effects of Nano-particles on Histo-pathological changes of the fish. Journal of Environmental Health Science and Engineering, vol. 13, p. 62. https://dx.doi.org/10.1186%2Fs40201-015-0216-9

[42] Contreras-Zentella, M. and Hernández-Muñoz, R. (2016) Is liver enzyme release really associated with cell necrosis induced by oxidant stress?. Oxidative Medicine and Cellular Longevity, vol. 2016, p. 1-12. https://doi.org/10.1155/2016/3529149

[43] Velíšek, J., Dobšíková, R., Svobodova, Z., Modra, H., Luskova, V. (2006). Effect of deltamethrin on the biochemical profile of common carp (Cyprinus carpio L.). Bulletin of Environmental Contamination and Toxicology, vol. 76, p. 992-998. https://doi.org/10.1007/s00128-006-1016-9

[44] Min, E.Y. and Kang, J.C. (2008). Effect of waterborne benomyl on the hematological and antioxidant parameters of the Nile tilapia, Oreochromis niloticus. Pesticide Biochemistry and Physiology, vol. 92, p. 138-143. https://doi.org/10.1016/j.pestbp.2008.07.007

Downloads

Published

2025-03-10

How to Cite

The subacute toxicity of silver nanoparticles on some immunology and physiology responses in Shabut (Tor grypus). (2025). Development Engineering Conferences Center Articles Database, 2(6). https://doi.org/10.5281/zenodo.17058220

Similar Articles

1-10 of 14

You may also start an advanced similarity search for this article.