رویکرد های نوین پرداخت سطح در مقیاس نانومتری و اتمی
Keywords:
پولیش, زبری, زیر نانومتر, سایش مکانیکیAbstract
این مقاله به بررسی رویکردهای پولیش در مقیاس اتمی و نزدیک به اتمی می پردازد و روش های مختلفی از جمله پولیش مکانیکی شیمیایی(CMP)، پولیش به کمک پلاسما (PAP)، وروش های بدون تغییر شیمیایی مانند ماشینکاری انتشار الاستیک (EEM) را معرفی میکند. این روش ها بر مبنای کاهش زبری سطح تا زیر نانومتر و حتی مقیاس آنگستروم طراحی شده اند.
کاربرد های صنعتی شامل بهبود کیفیت سطح در صنایع نوری، الکترونیک و اپتیک است. همچنین چالش هایی مانند هزینه بالا، بهینه سازی فرآیند ها و محدودیت در پردازش سطوح پیچیده نیز مورد بحث قرار گرفته اند. آینده این فن آوری ها به بهبود تعادل میان کارایی،دقت و هزینه وابسته است.
Downloads
References
1. Zucuni, C.P.; Dapieve, K.S.; Rippe, M.P.; Pereira, G.K.R.; Bottino, M.C.; Valandro, L.F. Influence of finishing/polishing on the fatigue strength, surface topography, and roughness of an yttrium-stabilized tetragonal zirconia polycrystals subjected to grinding. J. Mech. Behav. Biomed. Mater. 2019, 93, 222–229. [CrossRef] [PubMed]
2. Ettl, P.; Schmidt, B.E.; Schenk, M.; Laszlo, I.; Haeusler, G. Roughness parameters and surface deformation measured by coherence radar. Int. Conf. Appl. Opt. Metrol. 1998, 3407, 133–140.
3. Kriiska, A. Excavations of the Stone Age site at Vihasoo III. Arheol. Välitööd Eest. 1996, 7, 19–28
4. Helden, V.; Albert; Dupré, S.; Gent, R.V. The Origins of the Telescope; Amsterdam University Press: Amsterdam, The Netherlands, 2010.
5. Masters, B.R. Ernst Abbe and the Foundation of Scientific Microscopes. Opt. Photonics News 2007, 18, 18. [CrossRef]
6. Carl Zeiss, Ernst Abbe and Otto Schott–A Winning Team. 2002. Available online: https://www.zeiss.com/vision-care/int/bettervision/understanding-vision/carl-zeiss-ernst-abbe-and-otto-schott-a-winning-team.html (accessed on 15 December 2022).
8. Pomes, C.; Slack, G.; Wise, M. Surface roughness of dental castings. J. Am. Dent. Assoc. 1950, 41, 545–556. [CrossRef]
10. Pimenov, S.M.; Kononenko, V.V.; Ralchenko, V.G.; Konov, V.I.; Gloor, S.; Lüthy, W.; Weber, H.P.; Khomich, A.V. Laser polishing of diamond plates. Appl. Phys. A: Mater. Sci. Process. 1999, 69, 81–88. [CrossRef]
9. Fähnle, O.W.; van Brug, H.H. Fluid jet polishing: Removal process analysis. Opt. Fabr. Test. 1999, 3739, 68–77.
10. Molesini, G.; Greco, V. Galileo Galilei: Research and development of the telescope. Trends Opt. 1996, 23, 423–438.
11. Brinksmeier, E.; Riemer, O.; Gessenharter, A. Finishing of structured surfaces by abrasive polishing. Precis. Eng. 2006, 30, 325–336. [CrossRef]
12. Zhou, Y.; Pan, G.; Shi, X.; Zhang, S.; Gong, H.; Luo, G. Effects of ultra-smooth surface atomic step morphology on chemical mechanical polishing (CMP) performances of sapphire and SiC wafers. Tribol. Int. 2015, 87, 145–150. [CrossRef]
13. Chen, L.; Wen, J.; Zhang, P.; Yu, B.; Chen, C.; Ma, T.; Lu, X.; Kim, S.H.; Qian, L. Nanomanufacturing of silicon surface with a single atomic layer precision via mechanochemical reactions. Nat. Commun. 2018, 9, 1–7. [CrossRef]
14. Zhang, Z.; Yan, J.; Kuriyagawa, T. Manufacturing technologies toward extreme precision. Int. J. Extrem. Manuf. 2019, 1, 022001. [CrossRef]
15. Cook, L.M. Chemical processes in glass polishing. J. Non-Cryst. Solids 1990, 120, 152–171. [CrossRef]
16. Onodera, T.; Takahashi, H.; Nomura, S. First-principles molecular dynamics investigation of ceria/silica sliding interface toward
functional materials design for chemical mechanical polishing process. Appl. Surf. Sci. 2020, 530, 147259. [CrossRef]
17. Zhang, Z.; Jin, Z.; Guo, J. The effect of the interface reaction mode on chemical mechanical polishing. CIRP J. Manuf. Sci. Technol.
2020, 31, 539–547. [CrossRef]
18. Preston, F. The theory and design of plate glass polishing machines. J. Glass Technol. 1927, 11, 214–256.
19. Harsha, A.; Tewari, U. Two-body and three-body abrasive wear behaviour of polyaryletherketone composites. Polym. Test. 2003,22, 403–418. [CrossRef]
20. Xu, Q.; Chen, L.; Yang, F.; Cao, H. Influence of slurry components on copper CMP performance in alkaline slurry. Microelectron.Eng. 2017, 183, 1–11. [CrossRef]
21. Liao, C.; Guo, D.; Wen, S.; Luo, J. Effects of chemical additives of CMP slurry on surface mechanical characteristics and materialremoval of copper. Tribol. Lett. 2012, 45, 309–317. [CrossRef]
22. Yamamura, K.; Takiguchi, T.; Ueda, M.; Hattori, A.N.; Zettsu, N. High-Integrity Finishing of 4H-SiC (0001) by Plasma-Assisted Polishing. Adv. Mater. Res. 2010, 126, 423–428. [CrossRef]
23. Deng, H. Development of Plasma-Assisted Polishing for Highly Efficient and Damage-Free Finishing of Single-Crystal SiC, GaN and VD-SiC; Osaka University: Osaka, Japan, 2016.
24. Deng, H.; Yamamura, K. Atomic-scale flattening mechanism of 4H-SiC (0 0 0 1) in plasma assisted polishing. CIRP Ann. 2013, 62,575–578. [CrossRef]
25. Deng, H.; Takiguchi, T.; Ueda, M.; Hattori, A.N.; Zettsu, N.; Yamamura, K. Damage-Free Dry Polishing of 4H-SiC Combined withAtmospheric-Pressure Water Vapor Plasma Oxidation. Jpn. J. Appl. Phys. 2011, 50, 08JG05. [CrossRef]
26. Deng, H.; Endo, K.; Yamamura, K. Plasma-assisted polishing of gallium nitride to obtain a pit-free and atomically flat surface.CIRP Ann. 2015, 64, 531–534. [CrossRef]
27. Yamamura, K.; Emori, K.; Sun, R.; Ohkubo, Y.; Endo, K.; Yamada, H.; Chayahara, A.; Mokuno, Y. Damage-free highly efficient polishing of single-crystal diamond wafer by plasma-assisted polishing. CIRP Ann. 2018, 67, 353–356. [CrossRef]
28. Deng, H.; Endo, K.; Yamamura, K. Damage-free finishing of CVD-SiC by a combination of dry plasma etching and plasma-assisted polishing. Int. J. Mach. Tools Manuf. 2017, 115, 38–46. [CrossRef]
29. Shen, X.; Tu, Q.; Deng, H.; Jiang, G.; He, X.; Liu, B.; Yamamura, K. Comparative analysis on surface property in anodic oxidation polishing of reaction-sintered silicon carbide and single-crystal 4H silicon carbide. Appl. Phys. A 2016, 122, 354. [CrossRef]
30. Thomas, E.L.; Mandal, S.; Brousseau, E.B.; Williams, O.A. Silica based polishing of {100} and {111} single crystal diamond. Sci. Technol. Adv. Mater. 2014, 15, 035013. [CrossRef]
31. Yamazaki, T.; Kurokawa, S.; Umezaki, Y.; Ohnishi, O.; Akagami, Y.; Yamaguchi, Y.; Kishii, S. Study on the Development
of Resource-Saving High Performance Slurry-Polishing/CMP for glass substrates in a radical polishing environment, using
manganese oxide slurry as an alternative for ceria slurry. Adv. Sci. Technol. 2010, 64, 65–70.
32. Aida, H.; Doi, T.; Takeda, H.; Katakura, H.; Kim, S.-W.; Koyama, K.; Yamazaki, T.; Uneda, M. Ultraprecision CMP for sapphire, GaN, and SiC for advanced optoelectronics materials. Curr. Appl. Phys. 2012, 12, S41–S46. [CrossRef]
33. Zhou, Y.; Pan, G.; Shi, X.; Gong, H.; Luo, G.; Gu, Z. Chemical mechanical planarization (CMP) of on-axis Si-face SiC wafer using catalyst nanoparticles in slurry. Surf. Coat. Technol. 2014
34. Shi, X.; Chen, G.; Xu, L.; Kang, C.; Luo, G.; Luo, H.; Zhou, Y.; Dargusch, M.S.; Pan, G. Achieving ultralow surface roughness and high material removal rate in fused silica via a novel acid SiO2 slurry and its chemical-mechanical polishing mechanism. Appl.Surf. Sci. 2020, 500, 144041. [CrossRef]
35. Wang, W.; Chen, Y.; Chen, A.; Ma, X. Composite particles with dendritic mesoporous-silica cores and nano-sized CeO2 shells and their application to abrasives in chemical mechanical polishing. Mater. Chem. Phys. 2020, 240, 122279. [CrossRe
36. Deng, H.; Endo, K.; Yamamura, K. Competition between surface modification and abrasive polishing: A method of controllingthe surface atomic structure of 4H-SiC (0001). Sci. Rep. 2015, 5, 8947. [CrossRef] [PubMed]
37. Hara, H.; Sano, Y.; Mimura, H.; Arima, K.; Kubota, A.; Yagi, K.; Murata, J.; Yamauchi, K. Novel abrasive-free planarization of Si and SiC using catalyst. In Towards Synthesis of Micro-/Nano-Systems; Springer: London, UK, 2007
38. Bingham, R.G.; Walker, D.D.; Kim, D.-H.; Brooks, D.; Freeman, R.; Riley, D. Novel automated process for aspheric surfaces. Curr.Dev. Lens Des. Opt. Syst. Eng. 2000, 4093, 445–450.
39. Cao, Z.; Cheung, C. Multi-scale modeling and simulation of material removal characteristics in computer-controlled bonnet polishing. Int. J. Mech. Sci. 2016, 106, 147–156. [CrossRef]
40. Stahl, H.P.; Walker, D.D.; Beaucamp, A.T.H.; Doubrovski, V.; Dunn, C.; Freeman, R.; McCavana, G.; Morton, R.; Riley, D.; Simms,J.; et al. New results extending the Precessions process to smoothing ground aspheres and producing freeform parts. Opt. Manuf.Test. VI 2005, 5869, 79–87.
41. Wang, C.; Yang, W.; Wang, Z.; Yang, X.; Hu, C.; Zhong, B.; Guo, Y.; Xu, Q. Dwell-time algorithm for polishing large optics. Appl.Opt. 2014, 53, 4752–4760. [CrossRef]
42. Xia, Z.; Fang, F.Z.; Ahearne, E.; Tao, M. Advances in polishing of optical freeform surfaces: A review. J. Mater. Process. Technol.2020, 286, 116828. [CrossRef]
43. Pan, R.; Zhong, B.; Chen, D.; Wang, Z.; Fan, J.; Zhang, C.; Wei, S. Modification of tool influence function of bonnet polishing based on interfacial friction coefficient. Int. J. Mach. Tools Manuf. 2018, 124, 43–52. [CrossRef]
44. Bo, Z.; Xianhua, C.; Ri, P.; Jian, W.; Hongzhong, H.; Wenhui, D.; Zhenzhong, W.; Ruiqing, X.; Defeng, L. The effect of tool wear on the removal characteristics in high-efficiency bonnet polishing. Int. J. Adv. Manuf. Technol. 2017, 91, 3653–3662. [CrossRef]
45. Shi, C.; Peng, Y.; Hou, L.; Wang, Z.; Guo, Y. Micro-analysis model for material removal mechanisms of bonnet polishing. Appl.Opt. 2018, 57, 2861–2872. [CrossRef] [PubMed]
46. Han, W.; Mathew, P.T.; Kolagatla, S.; Rodriguez, B.J.; Fang, F.Z. Toward Single-Atomic-Layer Lithography on Highly OrientedPyrolytic Graphite Surfaces Using AFM-Based Electrochemical Etching. Nanomanufacturing Metrol. 2022, 5, 32–38. [CrossRef][PubMed]
47. Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.M.; Hamilton, J.W.J.; Byrne, J.A.K.;O’Shea; et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. BEnviron. 2012, 125, 331–349. [CrossRef]
48. Allen, L.N.; Romig, H.W. Demonstration of an ion-figuring process. Adv. Opt. Manuf. Test. 1990, 1333, 22–33.
49. Kaufman, H.R.; Reader, P.D.; Isaacson, G.C. Ion Sources for Ion Machining Applications. AIAA J. 1977, 15, 843–847. [CrossRef]
50. Wilson, S.; McNeil, J. Neutral ion beam figuring of large optical surfaces. Curr. Dev. Opt. Eng. II 1987, 818, 320–324.
51. Haensel, T.; Nickel, A.; Schindler, A. Ion beam figuring of strongly curved surfaces with a (x, y, z) linear three-axes system. In Plasmonics and Metamaterials; Optica Publishing Group: Washington, DC, USA, 2008; p. JWD6.
52. MZeuNer; Kiontke, S. Ion Beam Figuring Technology in Optics Manufacturing An established alternative for commercial applications. Opt. Photonik 2012, 7, 56–58. [CrossRef]
53. Mantenieks, O.; Duchemin, J.; Brophy, C.; Garner, P.; Ray, V.; Shutthanandan, M. A Review of Low Energy Sputtering Theory and Experiments. In Proceedings of the 25th International Electric Propulsion Conference, Cleveland, OH, USA, 24–28 August 1997;pp. 1–9.
54. Meinel, A.; Bashkin, S.; Loomis, D. Controlled Figuring of Optical Surfaces by Energetic Ionic Beams. Appl. Opt. 1965, 4, 1674.[CrossRef]
55. Sigmund, P. Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets. Phys. Rev. 1969, 184, 383.[CrossRef]
56. Schindler, A.; Hänsel, T.; Frost, F.; Fechner, R.; Seidenkranz, G.; Nickel, A.; Thomas, H.-J.; Neumann, H.; Hirsch, D.; Schwabe, R.Ion beam finishing technology for high precision optics production. In Optical Fabrication and Testing; Optica Publishing Group:Washington, DC, USA, 2002; p. OTuB5.
57. TKamimura; Nakai, K.; Mori, Y.; Sasaki, T.; Yoshida, H.; Nakatuka, M.; Tanaka, M.; Toda, S.; Tanaka, M.; Yoshida, K. Improvement of laser-induced surface damage in UV optics by ion beam etching (CsLiB6O10 and fused silica). Laser-Induc. Damage Opt. Mater. 1999, 3578, 695–701.
58. Mahmud, S.F.; Fukabori, T.; Pahlovy, S.A.; Miyamoto, I. Low energy ion beam smoothening of artificially synthesized single crystal diamond chips with initial surface roughness of 0.08–0.4nm rms. Diam. Relat. Mater. 2012, 24, 116–120. [CrossRef]
59. Allen, L.N.; Hannon, J.J.; Wambach, R., Jr. Final surface error correction of an off—Axis aspheric petal by ion figuring. Curr. Dev.Opt. Eng. Commer. Opt. 1992, 1543, 190–200.
60. Drueding, T.W.; Fawcett, S.C.; Wilson, S.R.; Bifano, T.G. Ion beam figuring of small optical components. Opt. Eng. 1995, 34,3565–3571.
61. Xie, X.; Hao, Y.; Zhou, L.; Dai, Y.; Li, S. High thermal expansion optical component machined by ion beam figuring. Opt. Eng.2012, 51, 013401. [CrossRef]
62. Yin, X.; Deng, W.; Tang, W.; Zhang, B.; Xue, D.; Zhang, F.; Zhang, X. Ion beam figuring approach for thermally sensitive space optics. Appl. Opt. 2016, 55, 8049–8055. [CrossRef]
63. Schindler, A.; Haensel, T.; Flamm, D.; Frank, W.; Boehm, G.; Frost, F.; Fechner, R.; Bigl, F.; Rauschenbach, B. Ion beam and plasma jet etching for optical component fabrication. Lithogr. Micromach. Tech. Opt. Compon. Fabr. 2001, 4440, 217–227.
64. Li, X.; Goodhue, W.; Santeufeimio, C.; Tetreault, T.; MacCrimmon, R.; Allen, L.; Bliss, D.; Krishnaswami, K.; Sung, C. Gas cluster ion beam processing of gallium antimonide wafers for surface and sub-surface damage reduction. Appl. Surf. Sci. 2003, 218,251–258. [CrossRef]
65. Arnold, T.; Böhm, G.; Fechner, R.; Meister, J.; Nickel, A.; Frost, F.; Hänsel, T.; Schindler, A. Ultra-precision surface finishing by ion beam and plasma jet techniques—Status and outlook. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2010, 616, 147–156. [CrossRef]
66. Chkhalo, N.I.; Churin, S.A.; Pestov, A.E.; Salashchenko, N.N.; Vainer, Y.A.; Zorina, M.V. Roughness measurement and ion-beam polishing of super-smooth optical surfaces of fused quartz and optical ceramics. Opt. Express 2014, 22, 20094–20106. [CrossRef]
67. Wang, Z.; Wu, L.; Fang, Y.; Dun, A.; Zhao, J.; Xu, X.; Zhu, X. Application of Flow Field Analysis in Ion Beam Figuring for
Ultra-Smooth Machining of Monocrystalline Silicon Mirror. Micromachines 2022, 13, 318. [CrossRef]
68. Golini, D. 60. A Brief History of QED Technologies. Photonics Spectra 1993, 60, 313–318.
69. Kordonski, W.; Golini, D. Multiple Application of Magnetorheological Effect in High Precision Finishing. J. Intell. Mater. Syst.Struct. 2016, 13, 401–404. [CrossRef]
70. Tang, X.; Zhang, X.; Tao, R.; Rong, Y. Structure-enhanced yield stress of magnetorheological fluids. J. Appl. Phys. 2000, 87,2634–2638. [CrossRef]
71. Zhang, Y.; Fang, F.Z.; Huang, W.; Wang, C.; Fan, W. Polishing technique for potassium dihydrogen phosphate crystal based on magnetorheological finishing. Procedia CIRP 2018, 71, 21–26. [CrossRef]
72. Kordonski, W.I.; Golini, D. Fundamentals of Magnetorheological Fluid Utilization in High Precision Finishing. J. Intell. Mater.Syst. Struct. 2016, 10, 683–689. [CrossRef]
73. Geyl, R.; Di Luzio, S.; Rimmer, D.; Gagnaire, H.; Revel, P.; Wang, L.; Feraud, B.; Tirvaudey, C. Industrial process of aspherical lens surfaces manufacturing. Opt. Fabr. 2004, 5252, 496–507.
74. Kumar, M.; Kumar, A.; Alok, A.; Das, M. Magnetorheological method applied to optics polishing: A review. IOP Conf. Ser. Mater.Sci. Eng. 2020, 804, 012012. [CrossRef]
75. Bentley, J.L.; Beier, M.; Scheiding, S.; Gebhardt, A.; Loose, R.; Risse, S.; Eberhardt, R.; Tünnermann, A.; Pfaff, M. Fabrication of high precision metallic freeform mirrors with magnetorheological finishing (MRF). Optifab 2013, 8884, 139–152.
76. Navarro, R.; Burge, J.H.; Hu, H.; Song, C.; Xie, X. Combined fabrication technique for high-precision aspheric optical windows.Adv. Opt. Mech. Technol. Telesc. Instrum. II 2016, 9912, 99123W.
77. Singh, A.K.; Jha, S.; Pandey, P.M. Magnetorheological Ball End Finishing Process. Mater. Manuf. Process. 2012, 27, 389–394.[CrossRef]
78. Shi, F.; Shu, Y.; Dai, Y.; Peng, X.; Li, S. Magnetorheological elastic super-smooth finishing for high-efficiency manufacturing of ultraviolet laser resistant optics. Opt. Eng. 2013, 52, 075104. [CrossRef]
79. Khounsary, A.M.; Shorey, A.B.; Dinger, U.; Kordonski, W.; Tricard, M.; Ota, K. Magnetorheological finishing of large and lightweight optics. Adv. Mirror Technol. X-Ray EUV Lithogr. Laser Other Appl. II 2004, 5533, 99–107.
80. Nejatpour, M.; Unal, U.; Acar, H.Y. Bidisperse magneto-rheological fluids consisting of functional SPIONs added to commercial MRF. J. Ind. Eng. Chem. 2020, 91, 110–120. [CrossRef]
81. Fähnle, O.W.; Van Brug, H.; Frankena, H.J. Fluid jet polishing of optical surfaces. Appl. Opt. 1998, 37, 6771–6773. [CrossRef]
82. Stahl, H.P.; Messelink, W.A.C.M.; Waeger, R.; Wons, T.; Meeder, M.; Heiniger, K.C.; Faehnle, O.W. Prepolishing and finishing of optical surfaces using fluid jet polishing. Opt. Manuf. Test. VI 2005, 5869, 38–43.
83. Cao, Z.C.; Cheung, C.F. An Experimental Investigation of Effect of Process Parameters on Materials Removal Characteristics in Fluid Jet Polishing. Key Eng. Mater. 2016, 679, 91–96. [CrossRef]
84. Booij, S.M. Nanometer deep shaping with fluid jet polishing. Opt. Eng. 2002, 41, 1926. [CrossRef]
85. Bitter, J. A study of erosion phenomena part I. Wear 1963, 6, 5–21. [CrossRef]
86. Bitter, J. A study of erosion phenomena: Part II. Wear 1963, 6, 169–190. [CrossRef]
87. Finnie, I.; McFadden, D. On the velocity dependence of the erosion of ductile metals by solid particles at low angles of incidence. Wear 1978, 48, 181–190. [CrossRef]
88. Hutchings, I. A model for the erosion of metals by spherical particles at normal incidence. Wear 1981, 70, 269–281. [CrossRef]
89. Kordonski, W.; Shorey, A.B.; Sekeres, A. New magnetically assisted finishing method: Material removal with magnetorheological fluid jet. Opt. Manuf. Test. V 2003, 5180, 107–114.
90. Beaucamp, A.; Namba, Y.; Freeman, R. Dynamic multiphase modeling and optimization of fluid jet polishing process. CIRP Ann.2012, 61, 315–318. [CrossRef]
91. Fang, F.Z. The three paradigms of manufacturing advancement. J. Manuf. Syst. 2022, 63, 504–505. [CrossRef]
92. Beaucamp, A.T.; Namba, Y.; Charlton, P.; Jain, S.; Graziano, A.A. Finishing of additively manufactured titanium alloy by shape adaptive grinding (SAG). Surf. Topogr. Metrol. Prop. 2015, 3, 024001. [CrossRef]
93. Beaucamp, A.; Namba, Y.; Combrinck, H.; Charlton, P.; Freeman, R. Shape adaptive grinding of CVD silicon carbide. CIRP Ann. 2014, 63, 317–320. [CrossRef]
94. Carlson, J.D. What Makes a Good MR Fluid? Journal of intelligent material systems and structures. 2002, 13, 431–435. [CrossRef]
95 . Chkhalo, N.I.; Kaskov, I.A.; Malyshev, I.V.; Mikhaylenko, M.S.; Pestov, A.E.; Polkovnikov, V.N.; Salashchenko, N.N.; Toropov, M.N.; Zabrodin, I.G. High-performance facility and techniques for high-precision machining of optical components by ion beams. Precis. Eng. 2017, 48, 338–346. [CrossRef]
96 . Clay, W. Surface Finish. Proc. Inst. Automob. Eng. 1944, 38, 43–73
97 . Bossis, G.; Lemaire, E.; Volkova, O.; Clercx, H. Yield stress in magnetorheological and electrorheological fluids: A comparison between microscopic and macroscopic structural models. J. Rheol. 1997, 41, 687–704. [CrossRef]
98 . Tricard, M.; Kordonski, W.I.; Shorey, A.B.; Evans, C. Magnetorheological Jet Finishing of Conformal, Freeform and Steep Concave Optics. CIRP Ann. 2006, 55, 309–312. [CrossRef]
99 . Lee, J.W.; Hong, K.P.; Cho, M.W.; Kwon, S.H.; Choi, H.J. Polishing characteristics of optical glass using PMMA-coated carbonyliron-based magnetorheological fluid. Smart Mater. Struct. 2015, 24, 065002. [CrossRef
100 . Khounsary, A.M.; Goto, S.; Morawe, C.; Zhong, X.; Hou, X.; Yang, J. Super-smooth processing x-ray telescope application research based on the magnetorheological finishing (MRF) technology. Adv. X-Ray/EUV Opt. Compon. XI 2016, 9963, 80–85
101 . Sugawara, J.; Kamiya, T.; Mikashima, B. Polishing Aspheric Mirrors of Zero-Thermal Expansion Cordierite Ceramics (NEXCERA) for Space Telescope. Mater. Technol. Appl. Opt. Struct. Compon. Sub-Syst. III 2017, 10372, 125–133.
102 . Zhang, F.; Song, X.; Zhang, Y.; Luan, D. Figuring of an ultra-smooth surface in nanoparticle colloid jet machining. J. Micromechanics Microengineering 2009, 19, 054009. [CrossRef]
103 . Peng, W.; Guan, C.; Li, S. Material removal mode affected by the particle size in fluid jet polishing. Appl. Opt. 2013, 52, 7927–7933. [CrossRef]
104 . Peng, W.; Li, S.; Guan, C.; Shen, X.; Dai, Y.; Wang, Z. Improvement of magnetorheological finishing surface quality by nanoparticle jet polishing. Opt. Eng. 2013, 52, 043401. [CrossRef]
105 . Ma, Z.; Peng, L.; Wang, J. Ultra-smooth polishing of high-precision optical surface. Optik 2013, 124, 6586–6589. [CrossRef]
106 . Beaucamp, A.; Namba, Y. Super-smooth finishing of diamond turned hard X-ray molding dies by combined fluid jet and bonnet polishing. CIRP Ann. 2013, 62, 315–318. [CrossRef]