فناوری پرینت سه بعدی ، مواد وفناوری های نوین بتن
Keywords:
ساختوساز بتنی پایدار, بتن سبز, سهبعدی بتن (3DPC), مصالح پایدار, فناوریهای نوآورانهAbstract
این مقاله به بررسی روشهای پایدار در صنعت ساختوساز بتنی میپردازد که با توجه به مصرف بالای بتن و اثرات زیستمحیطی تولید سیمان، اهمیت فزایندهای یافته است. راهکارهای مختلفی از جمله استفاده از بتن سبز با سنگدانههای بازیافتی و محصولات جانبی صنعتی، بتن نفوذپذیر برای مدیریت رواناب، بتن خنک برای کاهش اثر جزیره گرمایی شهری، و بتن با عملکرد فوقالعاده بالا (UHPC) برای کاهش مصرف مواد مطرح شدهاند. همچنین، استفاده از مصالح محلی برای کاهش هزینههای حملونقل و اثرات زیستمحیطی مورد تاکید قرار گرفته است. فناوریهای نوآورانهای مانند بتن خود ترمیمشونده برای افزایش دوام سازهها و بتن پرینت سهبعدی (3DPC)برای بهبود کارایی، کاهش پسماند و امکان ساخت اشکال پیچیده نیز در حال توسعه هستند. با وجود چالشهای فنی، اقتصادی و اجتماعی، همکاری بین دولت، صنعت و دانشگاه، و همچنین سرمایهگذاری در تحقیق و توسعه، اجرای سیاستهای حمایتی و ترویج استانداردها برای دستیابی به ساختوساز بتنی پایدار ضروری است. پرینت سهبعدی بتن در مقیاس بزرگ پتانسیل قابل توجهی برای تحول در این صنعت دارد، اما نیاز به پیشرفت در زمینه مواد، سیستمها و استانداردسازی دار
Downloads
References
Agwa, I.S., Zeyad, A.M., Tayeh, B.A., Adesina, A., de Azevedo, A.R., Amin, M., Hadzima-Nyarko, M., 2022b. A comprehensive review on the use of sugarcane bagasse ash as a supplementary cementitious material to produce eco-friendly concretes. Mater. Today: Proc.. https://www.google.com/search?q=https://doi.org/10.1016/j.matpr.2022.03.264.
•
Ahmad, J., Kontoleon, K.J., Majdi, A., Naqash, M.T., Deifalla, A.F., Ben Kahla, N., Isleem, H.F., Qaidi, S.M.A., 2022. A comprehensive review on the ground granulated blast furnace slag (GGBS) in concrete production. Sustainability 14 (14), 8783. https://doi.org/10.3390/su14148783.
•
Ahmed, M., AlQadhi, S., Mallick, J., Kahla, N.B., Le, H.A., Singh, C.K., Hang, H.T., 2022. Artificial neural networks for sustainable development of the construction industry. Sustainability 14 (22), 14738. https://doi.org/10.3390/su142214738.
•
Akeed, M.H., Qaidi, S., Faraj, R.H., Mohammed, A.S., Emad, W., Tayeh, B.A., Azevedo, A. R., 2022. Ultra-high-performance fiber-reinforced concrete. Part I: developments, principles, raw materials. Case Stud. Constr. Mater. 17, e01290 https://doi.org/10.1016/j.cscm.2022.e01290.
•
Al-Hamrani, A., Kucukvar, M., Alnahhal, W., Mahdi, E., Onat, N.C., 2021. Green concrete for a circular economy: a review on sustainability, durability, and structural properties. Materials 14 (2), 351. https://doi.org/10.3390/ma14020351.
•
Albuhairi, D., Di Sarno, L., 2022. Low-carbon self-healing concrete: state-of-the-art, challenges and opportunities. Buildings 12 (8), 1196. https://doi.org/10.3390/buildings12081196.
•
Alcantara, R., Blanca, C., Rivera, K., Serrano, E., 2023. Review of sustainable concrete based on photocatalytic to reduce the environmental impact in large works in Peru. J. Proj. Man. 8 (2), 91–98. https://doi.org/10.5267/j.jpm.2022.12.002.
•
Ali, R.A., Kharofa, O.H., 2021. The impact of nanomaterials on sustainable architectural applications smart concrete as a model. Mater. Today: Proc. 42, 3010–3017. https://doi.org/10.1016/j.matpr.2020.12.814.
•
Aliev, F., Mirzaev, O., Kholmurodov, T., Slavkina, O., Vakhin, A., 2022. Utilization of carbon dioxide via catalytic hydrogenation processes during steam-based enhanced oil recovery. Processes 10 (11), 2306.
•
Almeshal, I., Abu Bakar, B.H., Tayeh, B.A., 2022. Behaviour of reinforced concrete walls under fire: a review. Fire Technol. 58 (5), 2589–2639. https://www.google.com/search?q=https://doi.org/10.1007/s10694-022-01240-3.
•
Aravind, N., Abdulrehman, T.I., 2022. A review and sequel experimental analysis on physical and mechanical properties of permeable concrete for pavement construction. Int. J. Pavement Eng. 23 (12), 4160–4173. https://doi.org/10.1080/10298436.2021.1936519.
•
Asadi, I., Baghban, M.H., Hashemi, M., Izadyar, N., Sajadi, B., 2022. Phase change materials incorporated into geopolymer concrete for enhancing energy efficiency and sustainability of buildings: a review. Case Stud. Constr. Mater., e01162 https://www.google.com/search?q=https://doi.org/10.1016/j.cscm.2022.e01162.
•
Ashtiani Araghi, Z., Vosoughifar, H., 2023. Modified BIM processes considering safety–quality index for precast concrete construction. ASCE-ASME J. ASCE ASME J. Risk Uncertain. Eng. Syst. A Civ. Eng. 9 (1), 04022062 https://doi.org/10.1061/AJRUA6.0001274.
•
de Azevedo, A.R., Amin, M., Hadzima-Nyarko, M., Agwa, I.S., Zeyad, A.M., Tayeh, B.A., Adesina, A., 2022. Possibilities for the application of agro-industrial wastes in cementitious materials: a brief review of the Brazilian perspective. Cleaner Materials 3, 100040. https://doi.org/10.1016/j.clema.2021.100040.
•
Bahman, N., Al-Khalifa, M., Al Baharna, S., Abdulmohsen, Z., Khan, E., 2023. Review of carbon capture and storage technologies in selected industries: potentials and challenges. Rev. Env. Sci. Bio/Tech. 1–20. https://doi.org/10.1007/s11157-023-09649-0.
•
Bahrami, A., Awn, R.F., Corona, J., Eriksson, B., 2022. How aware and active is the Swedish building and real estate sector in climate-smart concrete?. Int. J. Eng. Trends Technol. 70 (1), 126–138. https://www.google.com/search?q=https://doi.org/10.14445/22315381/IJETT-V70I1P214.
•
Balan, L.A., Anupam, B.R., Sharma, S., 2021. Thermal and mechanical performance of cool concrete pavements containing waste glass. Construct. Build. Mater. 290, 123238 https://www.google.com/search?q=https://doi.org/10.1016/j.conbuildmat.2021.123238.
•
Balzano, B., Sweeney, J., Thompson, G., Tuinea-Bobe, C.L., Jefferson, A., 2021. Enhanced concrete crack closure with hybrid shape memory polymer tendons. Eng. Struct. 226, 111330 https://doi.org/10.1016/j.engstruct.2020.111330.
•
Bień, J., 2021. Production and use of waste-derived fuels in Poland: current status and perspectives. Prod. Eng. Arch. 27 (1), 36–41. https://www.google.com/search?q=https://doi.org/10.30657/pea.2021.27.5.
•
Caldarelli, V., Filipponi, M., Saetta, S., Rossi, F., 2022. Lean and green production for the modular construction. Proc. Comput. Sci. 200, 1298–1307. https://doi.org/10.1016/j.procs.2022.01.331.
•
Cheela, V.S., John, M., Biswas, W., Sarker, P., 2021. Combating urban heat island effect—a review of reflective pavements and tree shading strategies. Buildings 11 (3), 93. https://doi.org/10.3390/buildings11030093.
•
Chen, Y., Zhang, Y., Xie, Y., Zhang, Z., Banthia, N., 2022. Unraveling pore structure alternations in 3D-printed geopolymer concrete and corresponding impacts on macro-properties. Addit. Manuf. 59, 103137 https://www.google.com/search?q=https://doi.org/10.1016/j.addma.2022.103137.
•
Chouhan, J., Chandrappa, A.K., 2023. A systematic review on photocatalytic concrete for pavement applications: an innovative solution to reduce air pollution. Inn. Infra. Solutions 8 (3), 90. https://www.google.com/search?q=https://doi.org/10.1007/s41062-023-01060-6.
•
Gao, N., Tang, T., Xiang, H., Zhang, W., Li, Y., Yang, C., et al., 2022. Preparation and structure-properties of crosslinking organic montmorillonite/polyurethane as solid-solid phase change materials for thermal energy storage. Sol. Energy Mater. Sol. Cell. 244, 111831 https://www.google.com/search?q=https://doi.org/10.1016/j.solmat.2022.111831.
•
Gerassimidou, S., Velis, C.A., Williams, P.T., Castaldi, M.J., Black, L., Komilis, D., 2021. Chlorine in waste-derived solid recovered fuel (SRF), co-combusted in cement kilns: a systematic review of sources, reactions, fate and implications. Crit. Rev. Env. Tech. 51 (2), 140–186. https://doi.org/10.1080/10643389.2020.1717298.
•
Hamada, H.M., Thomas, B.S., Tayeh, B., Yahaya, F.M., Muthusamy, K., Yang, J., 2020a. Use of oil palm shell as an aggregate in cement concrete: a review. Construct. Build. Mater. 265, 120357 https://doi.org/10.1016/j.conbuildmat.2020.120357.
•
Hamdany, A.H., Satyanaga, A., Zhang, D., Kim, Y., Kim, J.R., 2022. Photocatalytic cementitious material for eco-efficient construction—a systematic literature review. Appl. Sci. 12 (17), 8741. https://www.google.com/search?q=https://doi.org/10.3390/app12178741.
•
Hemalatha, G., Sudheer, G., Shelton, J., Carmichael, J., 2022. Exploring the impact of EPS incorporation on insulated concrete form (ICF) wall panels under axial compression and flexure. J. King Saud Univ. Eng. Sci. https://doi.org/10.1016/j.jksues.2022.04.002.
•
Hong, W.Y., 2022. A techno-economic review on carbon capture, utilisation and storage systems for achieving a net-zero CO2 emissions future. Carbon Capt. Sci. Tech., 100044 https://doi.org/10.1016/j.ccst.2022.100044.
•
Ismail, Z.A.B., 2022. Thermal comfort practices for precast concrete building construction projects: towards BIM and IOT integration. Eng. Construct. Architect. Manag. 29 (3), 1504–1521. https://doi.org/10.1108/ECAM-09-2020-0767.
•
Iyer, J., Lackey, G., Edvardsen, L., Bean, A., Carroll, S.A., Huerta, N., et al., 2022. A review of well integrity based on field experience at carbon utilization and storage sites. Int. J. Greenh. Gas Control 113, 103533. https://doi.org/10.1016/j.ijggc.2021.103533.
•
Jaskulski, R., Jo´´zwiak-Nied´zwiedzka, D., Yakymechko, Y., 2020. Calcined clay as supplementary cementitious. Material. Materials 13 (21), 4734. https://www.google.com/search?q=https://doi.org/10.3390/ma13214734.
•
Jung, M., Park, J., Hong, S.G., Moon, J., 2022. The critical incorporation concentration (CIC) of dispersed carbon nanotubes for tailoring multifunctional properties of ultra-high performance concrete (UHPC). J. Mater. Res. Technol. 17, 3361–3370. https://doi.org/10.1016/j.jmrt.2022.02.103.
•Kothari, A., Habermehl-Cwirzen, K., Hedlund, H., Cwirzen, A., 2020. A review of the mechanical properties and durability of ecological concretes in a cold climate in comparison to standard ordinary Portland cement-based concrete. Materials 13 (16), 3467. https://doi.org/10.3390/ma13163467