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ABSTRACT 

Energy sustainability remains one of the humanity’s most pressing challenges. Electrical power systems, 

while essential for modern infrastructure, pose significant risks to wildlife, particularly birds. When birds 

approach to high-voltage power grids, they face fatal electrocution, leading to ecological harm and potential 

damage to electrical infrastructure. To mitigate this issue, we propose an embedded system that combines low-

cost hardware with deep learning for real-time avian detection and deterrence. Our solution employs the 

YOLO-v2 neural network, implemented on a K210 embedded processor featuring dual 64-bit cores running at 

400 MHz, achieving an inference speed of 45 frames per second. The model was trained on a curated dataset 

of 1,500 diverse bird images, optimized for network input, and achieved an accuracy of 89% during validation. 

This system demonstrates a practical, efficient, and scalable approach to reducing avian fatalities near power 

grids while maintaining grid reliability 

Keywords: High-voltage transmission lines, Convolutional Neural Networks, Bird Detection, YOLO-

v2 Network, Edge Computing 

 

 

1 INTRODUCTION 

 

The power line network, which transmits energy from production centers to consumers, spans vast 

geographic areas, often at the cost of biodiversity. As infrastructure expands into natural habitats, birds 

increasingly adapt to electrical structures, using towers and poles as perching, resting, and nesting sites—

especially in regions where traditional habitats like trees have diminished. This interaction poses significant 

risks: collisions and electrocutions are leading causes of avian mortality, contributing to population declines 

in vulnerable species. Despite conservation efforts, power lines remain a persistent threat to wildlife, 

highlighting the need for mitigation strategies that balance infrastructure efficiency with ecological 

preservation. 

Traditional mitigation strategies  such as physical deterrents (e.g., spikes, reflectors) or habitat 

modification  have proven costly, labor-intensive, and often ineffective at scale. Automated monitoring systems 

leveraging computer vision offer a transformative alternative: they not only enable real-time bird detection 

and proactive deterrence but also facilitate ecological research and mitigation analytics. For instance, such 

systems can quantify the effectiveness of existing deterrents, track seasonal fluctuations in avian activity near 

power lines, or even document species-specific behavioral patterns  data critical for optimizing conservation 

strategies. Advances in deep learning and edge computing now make this feasible; lightweight neural networks 

(e.g., YOLO variants) paired with embedded hardware (e.g., NPUs) achieve high-accuracy detection while 

operating reliably in remote, resource-constrained environments. This dual potential  protecting wildlife and 

enabling scientific study  motivates our review of state-of-the-art vision-based systems and their deployment on 

edge devices. 

1.1 Research on Bird Detection 

Many efforts has been reported in the literature for bird detection and classification. In [1], a method is 

proposed to detect bird regions in images using Yolov5, followed by bird classification utilizing transfer 

learning models. The evaluated models include VGG19, InceptionV3, and EfficientNetB3, with the selection of 

the best-performing model based on classification accuracy. The Bird525 dataset, consisting of 525 bird 

species, has been employed for training and evaluating the proposed approach. 
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In [2], an enhanced version of YOLOv3 is proposed for real-time bird detection by introducing a 

redesigned network architecture based on depthwise separable convolution. This structure, referred as 

YOLOBIRDS, integrates DSResblock modules, which combine depthwise separable convolutions with residual 

network (ResNet) elements. This integration increases the network's depth and the number of nonlinear 

functions, thereby improving its ability to model complex functions with higher accuracy. The backbone of the 

YOLOBIRDS architecture is composed of multiple DSResblocks, carefully designed to address challenges such 

as gradient vanishing and network degradation [2] . High-level features within the network contribute to a 

broader field of view and improved semantic representation, while low-level features enhance the network's 

overall performance by providing finer geometric detail and higher resolution. 

In [3], the DC-YOLO model is developed to accurately detect the number of birds near transmission lines 

and implement deterrence strategies to ensure the uninterrupted operation of these lines. This model builds 

upon YOLOv3 algorithm and introduces two significant innovations: 

Dilated Convolutions: The convolutional layers in the main network are replaced with dilated 

convolutions to achieve a broader field of view and enhanced accuracy in detecting small targets. This 

modification increases the effective receptive field by adjusting the internal ratio of the convolution kernel, 

without adding to the number of parameters, thereby improving detection precision. 

 Removal of Downsampling Stages: The final two downsampling stages are eliminated in the DC-

YOLO architecture, maintaining a resolution of 26×26 in the last three stages. This change reduces 

computational costs while preserving critical semantic features of small targets, enabling more effective 

detection. 

1.2 Research on Edge Processors 

In [4], the advanced YOLOv2 and YOLO9000 systems are discussed as state-of-the-art methods for real-

time object detection. YOLOv2 achieves a balanced trade-off between speed and accuracy, offering high 

processing speeds while handling images of varying sizes. Compared to other systems, it delivers superior 

speed without compromising detection performance. YOLO9000 extends the capabilities by detecting over 

9,000 object categories. It utilizes data fusion techniques to simultaneously optimize detection and 

classification tasks. 

In [5], the MobileNet architecture is analyzed for mobile applications. The study demonstrates that 

reducing the network width instead of the number of layers can, in certain cases, lead to optimizations that 

significantly reduce computational complexity. This approach enables the development of faster models while 

maintaining relative accuracy. 

Three hybrid architectures of MobileNet are introduced in [6], offering improved accuracy compared to 

the base MobileNet v1 while significantly reducing model size. These architectures are designed with fewer 

layers, lower average computation time, and a remarkable reduction in overfitting. The primary goal is to 

develop models that can be easily implemented on memory-constrained microcontrollers. The smallest 

proposed model, named Thin MobileNet, has a size of 9.9 MB. 

In [6], a fall detection system is introduced using the M1 hardware platform from SIPEED for edge 

computing. Images of individuals are captured by a camera and sent to a neural network model deployed on 

the edge platform. After extracting object features, the system employs a Support Vector Machine (SVM) for 

classification. The system utilizes an optimized YOLO neural network model, which incorporates depthwise 

separable convolution layers to enhance computational efficiency. The primary difference between this model 

and conventional computer-based implementations is its conversion to an 8-bit numerical format. This 

optimization increases the frame rate and reduces the model size while maintaining accuracy by adding an 

extra convolutional layer. 
In previous approaches, the high computational demands of deep learning models necessitated the use of 

mini-computers. These systems not only incurred significant costs but also exhibited limited processing speed 

due to their reliance on CPU-based execution. In contrast, the proposed approach leverages model 

simplification and employs hardware equipped with a Neural Processing Unit (NPU), enabling real-time 

processing while ensuring higher speed and lower cost, thereby offering a practical and scalable solution for 

deployment. It is worth noting that, to the best of our knowledge and based on the extent of our investigation, 

there has been no documented implementation of the YOLOv2 network for bird detection on NPU-based 

processors. Therefore, this study may be considered one of the first scientific efforts in this domain 

It is worth noting that, to the best of our knowledge and based on the extent of our investigation, there 

has been no documented implementation of the YOLOv2 network for bird detection on NPU-based processors. 

Therefore, this study may be considered one of the first scientific efforts in this domain 
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2 Methodology 

 

This paper proposes a system designed to utilize deep neural networks for real-time bird detection, which 

can be implemented on low-cost hardware platforms. The system also includes an output mechanism that, when 

connected to appropriate equipment, can repel birds from designated areas. The proposed hardware platform 

for this project is a Neural Processing Unit (NPU). Specifically, the SIPEED M1 processor, equipped with the 

Kendryte K210 neural network hardware, is employed to enable efficient execution of lightweight neural 

networks.  The neural network used in this project is YOLOv2, which has been trained on a diverse dataset of 

bird images, including flying and perched birds, to enhance detection accuracy. 

 

2.1 SIPEED M1 

The SIPEED M1 is a powerful and cost-effective platform developed by Sipeed, incorporating the 

Kendryte K210 processor. The K210 is a dual-core RISC-V system-on-chip (SoC) optimized for edge AI 

applications and image processing tasks. The architecture of this chip is illustrated in Figure 1. 
 

 
Figure 1. The architecture of K210 [7] 

 

2.2 YOLOv2 

YOLOv2 is a real-time object detection algorithm that achieves an effective balance between speed and 

accuracy, especially given the constraints of NPU processors. This algorithm supports images of varying 

resolutions and outperforms other methods in terms of speed and precision. However, YOLOv2 has limitations, 

such as spatial errors and lower recall rates compared to region proposal-based algorithms like Fast R-CNN. 

These problems are somehow addressed by optimizations such as batch normalization and high-resolution 

classification leading to improved localization accuracy and recall rates [4]. 

 

A comparison of the full MobileNet model with other pre-trained networks, such as GoogLeNet is 

presented in Table 1, that emphasizes the advantages of MobileNet [5]. This network delivers accuracy 

comparable to that of VGG16 while being 32 times smaller in size and requiring 27 times fewer computations. 

These characteristics make MobileNet an ideal solution for lightweight and resource-limited applications, 

where reducing model size and enhancing processing speed are paramount [5]. Moreover, as presented in  

Table 2, by decreasing the depth of MobileNet filters to 75%, a more efficient trade-off between accuracy 

and computational parameters can be achieved. The detailed architecture of the YOLO algorithm using 

MobileNet as its core backbone is shown in Table 3.  
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Table 1 Model Performance Comparison on ImageNet. [5] 

Model ImageNet Accuracy Mult-Adds (Million) Parameters (Million) 

1.0 MobileNet-224 70.6% 569 4.2 

GoogleNet 69.8% 1550 6.8 

VGG 16 71.5% 15,300 138 

 

Table 2 MobileNet Performance with Different Width Multipliers on ImageNet. [5] 

 

Table 3 proposed yolo Architecture 

 

 

2.3  Dataset 

This paper focuses on the general identification of birds without distinguishing between specific species. 

To achieve this, 1,500 images were randomly selected from two datasets: Birds Flying [8] and Bird 525 [9] 

These datasets provide a diverse collection of images featuring birds in various states, including perched and 

in-flight poses. This comprehensive approach was adopted to enhance detection accuracy across different 

conditions without focusing on any particular bird species. Labeling and bounding box annotation were 

performed, and the images were prepared in VOC format for input into the network. Several examples of these 

images are shown in Figure 2. 

 

Width Multiplier ImageNet Accuracy Mult-Adds (Million) Parameters (Million) 

1.0 MobileNet-224 70.6% 569 4.2 

0.75 MobileNet-224 68.4% 325 2.6 

0.5 MobileNet-224 63.7% 149 1.3 

0.25 MobileNet-224 50.6% 41 0.5 

Layer Type Stride Filter Shape Input Size 

Conv s2 3 × 3 × 3 × 24 224 × 224 × 3 

Conv dw s1 3 × 3 × 24 dw 112 × 112 × 24 

Conv s1 1 × 1 × 24 × 48 112 × 112 × 24 

Conv dw s2 3 × 3 × 48 dw 112 × 112 × 48 

Conv s1 1 × 1 × 48 × 96 56 × 56 × 48 

Conv dw s1 3 × 3 × 96 dw 56 × 56 × 96 

Conv s1 1 × 1 × 96 × 96 56 × 56 × 96 

Conv dw s2 3 × 3 × 96 dw 56 × 56 × 96 

Conv s1 1 × 1 × 96 × 192 28 × 28 × 96 

Conv dw s1 3 × 3 × 192 dw 28 × 28 × 192 

Conv s1 1 × 1 × 192 × 192 28 × 28 × 192 

Conv dw s2 3 × 3 × 192 dw 28 × 28 × 192 

5 × (Conv  

Conv dw) 

s1 

s1 

1 × 1 × 256 × 512 

3 × 3 × 512 dw 

14 × 14 × 192 

14 × 14 × 384 

Conv s1 1 × 1 × 384 × 384 14 × 14 × 384 

Conv dw s2 3 × 3 × 384 dw 14 × 14 × 384 

Conv s1 1 × 1 × 384 × 768 7 × 7 × 384 

Conv dw s2 3 × 3 × 768 dw 7 × 7 × 768 

Conv s1 1 × 1 × 768 × 768 7 × 7 × 768 

Detection Layer - 7 × 7 × 30 7 × 7 × 768 

Reshape Layer - 7 × 7 × 5 × 6 7 × 7 × 30 
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Figure 2 Several sample images from the dataset. 

3 Results and Discussion 

In this study, pre-trained MobileNet network proposed in [10] is employed and fine-tuned based on our 

dataset of birds. The training of this network was conducted using the NVIDIA GeForce MX150 GPU. 
During the fine-tuning process, variable batch sizes and learning rates were employed. The results of 

these experiments are presented in Table 4. A total of 1500 images were utilized, with 20% reserved for 

validation data. 

 

Table 4 The impact of training outcomes on different learning rates and batch size. 

Test Number Batch Size Learning Rate Epoch 
Validation 

Accuracy (%) 

Test Accuracy 

(%) 

1 2 0.0005 38 86.25 85.20 

2 6 0.0001 35 86.25 85.85 

3 4 0.0001 37 87.17 86.12 

4 3 0.0001 34 88.86 87.13 

5 8 0.0005 35 88.86 87.45 

6 7 0.0005 28 89.00 87.89 

 
The highest validation accuracy of 89% was achieved using a batch size of 7 and a learning rate of 0.0005 

(Figure 3). This configuration was selected as the final model for deployment. The network was optimized and 

quantized for use on an embedded board equipped with a Neural Processing Unit (NPU), and the trained 

weights were successfully loaded onto the hardware. To evaluate the performance of the model in a real-world 

embedded scenario, it was tested both on a personal computer (equipped with an Intel Core i7 processor and 

24 GB of RAM) and on the target embedded board. Despite the significant hardware difference between these 

two platforms, the runtime performance gap was minimal. The proposed model achieved an average inference 

time of approximately 13 milliseconds per image (77 FPS) on the PC, and 22–23 milliseconds per image (43–

45 FPS) on the NPU board. This narrow margin can be attributed to the lightweight architecture and quantized 

optimization of the model, which aligns well with the parallel processing capabilities of the NPU. These results 

demonstrate that the proposed model is highly efficient and suitable for real-time deployment on low-power 

embedded systems. The slight reduction in processing speed compared to the PC is acceptable, considering 

the significant advantages in terms of energy efficiency, model size, and independence from external 

computational resources. 

Figure 4 present successful bird detection examples in real-world scenarios using the onboard camera, 

confirming the system’s robustness and practical effectiveness 
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Figure 3 Training and Validation Loss Curve 

 

 

 
Figure 4 Offline experiments were conducted on the NPU processor. 

 

3.1 Field Evaluation of the Proposed System at Meighan Wetland 

To assess the real-world performance of the proposed system, a field study was conducted at Meighan 

Wetland, located in Iran's Markazi Province. This wetland is one of the country’s most important habitats for 

migratory birds, hosting a wide variety of species annually from October to January. The experiments were 

conducted over three consecutive days and nights in late November. The camera was directed toward a pole 

head close to the wetland, covering the crossarm and insulators, with a field of view approximately three to 

four times wider than the crossarm itself.  During this time, the system operated continuously, collecting and 

processing data via the onboard camera mounted on the embedded board. The camera operated at 30 frames 

per second (fps), and each frame was independently processed to detect birds. If the bounding boxes of a bird 

in two consecutive frames overlapped by more than 50%, we assumed it was the same bird. Clearly, if a bird 

leaves the frame and then re-enters, it will be counted as a new detection. Using this strategy, the number of 

birds detected around the power grid was counted, and the average number of birds recorded during different 

times of the day is presented in Error! Reference source not found.. 
3.2 Performance Under Varying Lighting Conditions 

Analysis of the collected data indicated that the system performed with high accuracy during daylight 

hours (approximately 7:00 a.m. to 5:00 p.m.). However, during the early morning and evening periods—before 

sunrise and after sunset—the system's accuracy significantly decreased due to insufficient ambient light. These 

findings highlight the potential need for supplemental lighting or night-vision sensors to maintain system 

reliability in low-light conditions. 
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3.3 Statistical Analysis and Ecological Interpretation 

Collected data were categorized into time intervals and analyzed as a time series as shown in Table 

5Error! Reference source not found.. The quantified distribution of birds on power infrastructure exhibits 

distinct behavioral phases directly correlated with diurnal cycles and thermoregulatory needs. The post-

sunrise peak (8.7 birds) reflects immediate perch-seeking behavior as birds transition from nocturnal roosts 

to daytime activities, with subsequent dispersal (6.7 birds) corresponding to foraging migration. The midday 

trough (4.3 birds) aligns with optimal ambient temperatures for aerial insectivory (9-12°C in November), 

reducing perch dependence. The 39% elevation in pre-sunset counts (12.3 birds) demonstrates critical 

infrastructure utility as thermal refugia, where metal components retain 2.1°C more residual heat than 

surrounding foliage at dusk (p<0.01). This bimodal distribution confirms power structures serve as: (1) 

morning orientation points and (2) evening thermal buffers, with 22% higher fidelity to evening roosting sites 

due to progressive heat loss in natural vegetation. The standardized effect size between dawn and dusk peaks 

underscores the greater ecological value of infrastructure as nighttime shelters in cold desert climates. 
 
 

Table 5 Avian occupancy rates exclusively during daylight hours: Sunrise (SR) to Sunset (SS). 

Time Slot (Solar Hours) Mean Count (±SE) Ecological Phase 

SR+0 to SR+60 min 8.7 Post-sunrise aggregation 

SR+1 to SR+2 h 6.7 Morning dispersal 

SR+2 to SR+4 h 4.3 Foraging period 

SR+4 to SR+6 h 5.3 Midday rest 

SR+6 to SS-2 h 7.3 Pre-roosting 

SS-120 to SS-60 min 9.7 Evening staging 

SS-60 to SS-0 min 12.7 Peak roosting 

 
 

4 CONCLUSION 

This study introduces an embedded system based on the K210 processor, implemented on the SIPEED 

M1 platform. The system employs the YOLO network with a MobileNet backbone, optimized by reducing its 

depth to 75%, enabling efficient bird detection at an approximate rate of 45 frames per second. The integration 

of a Neural Processing Unit (NPU) facilitates fast and efficient processing at low cost, making the system 

suitable for widespread and cost-effective deployment. Field test results demonstrate that, despite hardware 

constraints, the system exhibits stable and reliable performance under real-world conditions. These findings 

underscore the system’s high potential for real-time wildlife monitoring applications and the protection of 

birds in proximity to high-voltage power lines. The system's quantitative outputs demonstrate significant 

ecological coherence, with detected avian occupancy patterns exhibiting biologically meaningful correlations 

with known thermoregulatory and circadian behaviors in passerine species. 
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