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ABSTRACT 

The prediction of Tunnel Boring Machine (TBM) advance rate is crucial for optimizing tunneling 

operations and ensuring cost-effective project management. This study investigates the use of machine 

learning (ML) models, specifically the Random Forest Regressor (RFR) and Support Vector Machines 

(SVM), to predict TBM performance in heterogeneous soil conditions. By leveraging data-driven 

approaches, the research provides insights into the factors influencing TBM advance rates, including soil 

composition, mechanical properties, and operational parameters. A comprehensive sensitivity analysis was 

performed to identify the key variables affecting TBM efficiency, focusing on soil properties such as 

cohesion, friction angle, and uniaxial compressive strength. The RFR and SVM were used as the primary ML 

models to predict the TBM advance rate based on these features. The models were trained on 80% of the 

dataset, while 20% was held back for testing and validation. Results indicate that these machine learning-

based models, particularly the RFR and SVM, offer significant accuracy in predicting TBM performance, 

outperforming traditional empirical methods. The study contributes to the growing body of knowledge on ML 

applications in underground construction, with implications for enhancing TBM performance prediction, 

real-time monitoring, and reducing project risks. 
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1. INTRODUCTION 

  

Construction projects, especially large-scale underground projects such as metro systems, highways, and 

water tunnels, involve several complex factors that impact efficiency [1, 2]. Tunnel Boring Machines 

(TBMs) are crucial tools for these projects, but their performance is often influenced by varying geological 

conditions. These conditions affect the TBM’s advance rate, which is critical for project timelines and costs 

[3, 4]. 

The performance of TBMs is significantly influenced by soil composition and its mechanical properties, 

including factors like clay, silt, sand, gravel, and rock fragments. The interaction between these soil 

ingredients and mechanical properties such as friction angle, plasticity index, cohesion, and unconfined 

compressive strength (UCS) determines the TBM’s effectiveness. Machine learning (ML) models now offer 

a more efficient approach to analyzing these relationships compared to traditional empirical or physical 

testing methods [5, 6]. 
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In this study, we used machine learning-based sensitivity analysis to investigate the effect of different soil 

ingredients and mechanical properties on TBM performance. By applying the Tornado Ranking Approach, 

we identified the most influential factors for TBM efficiency. This analysis helps engineers make informed 

decisions regarding soil treatment techniques and tunnel design, optimizing tunneling operations. Ultimately, 

our findings contribute to more cost-effective and timely underground construction projects by improving 

TBM performance in varying geological conditions. 

 

2. LITERATURE REVIEW 

 

2.1 Overview of TBM and Their Performance 

TBMs are essential in modern underground construction, providing a mechanized means of excavating 

tunnels through a variety of geological conditions. The performance of a TBM is influenced by a range of 

factors, including the type of soil or rock it encounters, the machine's design, and operational parameters. The 

TBM advance rate (the rate at which the TBM progresses through the ground) is one of the most critical 

performance indicators in tunneling projects. A higher advance rate reduces project costs and timelines, 

whereas a lower advance rate can lead to significant delays and increased costs. Understanding the factors 

that impact the TBM advance rate is therefore fundamental to optimizing tunneling operations [7]. 

 

2.2 Soil Composition and Mechanical Properties  

The soil encountered during tunneling plays a crucial role in determining the TBM’s performance. The 

composition of the soil, including the proportion of clay, silt, sand, gravel, and rock fragments, directly 

affects the cutting efficiency of the TBM. The granular nature of sand and gravel typically results in faster 

tunneling, whereas clay and silt can cause significant challenges for TBMs due to their cohesive and plastic 

nature. The mechanical properties of the soil, including friction angle, plasticity index, cohesion, and UCS, 

also influence the TBM advance rate. The friction angle is a measure of the internal resistance of the soil to 

shear deformation. Soils with a high friction angle, such as granular sands, offer less resistance to TBM 

cutting, leading to higher advance rates. On the other hand, cohesive soils with a low friction angle, such as 

clays, tend to generate higher cutting forces, slowing down the TBM. The plasticity index (PI), which 

measures the soil’s ability to deform without cracking, is particularly important for understanding the 

behavior of fine-grained soils, while cohesion and UCS are critical indicators of the soil's overall strength and 

ability to resist deformation during tunneling [7]. 

 

2.3 Traditional Methods for Assessing TBM Performance   

Traditionally, the performance of TBMs has been evaluated through empirical methods, relying on 

historical data, physical tests, and engineering judgment. Several empirical models have been developed to 

estimate the TBM advance rate based on soil properties. For instance, The Terra-Machine Model uses a set of 

empirical equations to estimate the cutting force and the advance rate based on parameters such as soil 

strength and machine characteristics. These models often rely on simplified assumptions, such as uniform 

soil properties and ideal TBM performance, which may not always reflect real-world conditions [8]. 

Other studies have proposed the use of Rock Mass Rating (RMR) and Q-system classifications to 

evaluate rock mass properties and predict TBM performance. However, these methods have limitations when 

applied to heterogeneous soil conditions, where the properties can vary significantly across different layers of 

the tunnel. While these traditional methods provide useful initial estimates, they do not capture the 

complexity of the interaction between the TBM and varying geological conditions over time [9]. 

 

2.4 ML Approaches in TBM Performance Prediction   

Advancements in ML and artificial intelligence (AI) have improved the accuracy of TBM performance 

predictions. ML models, such as regression models and decision trees, address the limitations of traditional 

approaches by capturing non-linear relationships between soil parameters, TBM settings, and advance rates. 

Support vector machines (SVM) and artificial neural networks (ANNs) have demonstrated superior accuracy 

in predicting TBM performance compared to traditional models, particularly when using diverse datasets of 

soil types and mechanical properties. These models excel at predicting TBM advance rates and offer reliable 

insights into performance [10]. 
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However, the effectiveness of ML models depends on large, accurate datasets detailing soil properties, 

TBM specifications, and operational conditions. As more tunneling projects generate such data, ML methods 

are expected to play a critical role in real-time decision-making and predictive maintenance [10]. 

 

2.5 Sensitivity Analysis and Tornado Ranking Approach   

Optimizing TBM performance requires understanding how soil and mechanical variations affect advance 

rates. Sensitivity analysis identifies key factors influencing performance and helps prioritize optimization 

efforts. The Tornado Ranking Approach, a tool for sensitivity analysis, ranks the importance of various 

parameters by analyzing how changes in each affect the TBM advance rate. The results, visualized in 

Tornado Diagrams, highlight the most critical factors. Soil properties like clay content, friction angle, and 

UCS are highly influential. Factors such as rock fragments and cohesion can slow operations, while sand and 

gravel improve advance rates. Combining ML with sensitivity analysis allows engineers to identify and 

optimize critical parameters, aiding in method selection and material treatment [11]. 

In summary, TBM performance depends on soil and mechanical properties. While traditional prediction 

methods struggle with complex geological conditions, ML enhances accuracy, and tools like the Tornado 

Ranking Approach offer valuable insights for optimization. These advancements significantly improve TBM 

efficiency, benefiting tunneling operations and the construction industry [11]. 

 

3. METHODOLOGY  

 

Figure 1 shows that the current research was conducted in four steps, the methods of conducting them and 

their results will be discussed in detail in the following sections. 
 

 
Fig. 1.  Steps to conduct the current study  
 

3.1 Soil Classification  
The classification of the soil samples in this study was carried out using the ASHTO (American 

Association of State Highway and Transportation Officials) classification system, which is widely utilized for 

soil engineering in various infrastructure projects, particularly in tunneling. This system categorizes soils 

based on their grain size distribution and plasticity characteristics, with the main soil groups ranging from A-

1 (granular soils) to A-7 (fine-grained, cohesive soils). The specific soil groups, such as A-2, A-3, A-4, and 

others, help identify the potential behavior of soil during tunneling and its impact on TBM performance. The 

grain size distribution and PI were determined for each soil sample using sieve analysis and hydrometer tests. 

This enabled a thorough classification of the soils, helping us understand their composition and the potential 

effects on TBM advance rates. The PI provides insight into the soil's ability to deform and influence the 

stability of tunneling operations, which is particularly important for understanding the cohesive behavior of 

fine-grained soils [12]. 

 

3.2 Data Collection  

For this study, data was collected from a combination of field observations, geotechnical laboratory tests, 

and historical TBM performance records. A total of 50 tunneling projects were included, providing data on a 

variety of soil types and the corresponding TBM performance. The data collected included key soil 
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components, such as the proportions of clay, silt, sand, gravel, and rock fragments, as well as important 

mechanical properties like friction angle, plasticity index, cohesion, and UCS. These mechanical properties 

were determined using triaxial tests, direct shear tests, and unconfined compression tests. Additionally, TBM 

advance rates (in meters per day) were recorded for each project, linking soil characteristics and mechanical 

parameters to the corresponding TBM performance. The comprehensive dataset collected was crucial for 

performing subsequent data analysis and developing insights into the influence of soil ingredients and 

mechanical properties on TBM performance. 

 

3.3 Data Analysis  

In this study, Random Forest Regressor (RFR) and SVM were applied to predict the TBM advance rate 

based on soil characteristics and mechanical properties. These models were trained using data from 50 

tunneling projects, including key features such as soil composition (clay, silt, sand, gravel, rock fragments) 

and mechanical properties (friction angle, plasticity index, cohesion, unconfined compressive strength). The 

goal was to understand how these features influence TBM performance. 

 

3.3.1 Random Forest Regressor (RFR)  

RFR is an ensemble learning method that constructs multiple decision trees, each trained on a random 

subset of the data. The final prediction is made by averaging the predictions of all trees, which reduces 

overfitting. Mathematically, RFR minimizes the mean squared error (MSE) of the predictions [13]. Each tree 

makes a prediction, and the output of the forest is the mean of all individual tree predictions: 

𝑦̂ =
1

𝑇
∑ 𝑦̂𝑡

𝑇

𝑡=1

 (1) 

 

Where T is the number of trees and ŷt is the prediction form the t-th tree. 

 

3.3.1 Support Vector Machines (SVM) 

SVM for regression aims to find a hyperplane that best fits the data by minimizing a loss function that 

includes both the error and a regularization term: 

𝐿(𝑓(𝑥), 𝑦) =
1

2
 ||𝑤||2 + 𝐶 ∑ Ɛ𝑖

𝑛

𝑖=1

 (2) 

 

Where w is the weight vector, Ɛi are slack variables, and C controls the trade-off between margin size and 

error. The SVM uses an epsilon-insensitive loss function to tolerate small deviations between predicted and 

actual values, focusing on significant errors. Both models were trained on 80% of the dataset, with the 

remaining 20% used for testing, to predict TBM advance rate based on soil and mechanical features. Cross-

validation techniques were used to ensure model robustness and to minimize the risk of overfitting, which is 

essential for making accurate predictions in real-world tunneling projects [10, 14]. RFR is an ensemble 

learning method that constructs multiple decision trees, each trained on a random subset of the data. The final 

prediction is made by averaging the predictions of all trees, which reduces overfitting. Mathematically, RFR 

minimizes the mean MSE of the predictions [13]. Each tree makes a prediction, and the output of the forest is 

the mean of all individual tree predictions: 

 

3.4 Sensitivity Analysis  

The final part of the methodology involved conducting a sensitivity analysis to understand how changes 

in soil composition and mechanical properties influence the TBM advance rate. This was done using the 

Tornado Ranking Approach, which systematically varies each parameter within a predefined range and 

measures its effect on TBM performance. Parameters such as clay content (ranging from 0% to 40%) and 

UCS (ranging from 200 kPa to 1000 kPa) were selected based on typical values observed in the dataset. 

Simulations were run for each parameter, where one factor was varied while others were kept constant. The 

results were analyzed to determine the sensitivity of the TBM advance rate to each parameter. A Tornado 

Diagram was created, ranking the parameters based on their effect on performance. This visual representation 

allowed us to identify which soil and mechanical features most significantly impacted TBM efficiency and 

provided actionable insights for optimizing tunnel design and machine operation [11]. 
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4. RESULTS AND DISCUSSION  

  

This study explores the relationship between various soil properties and the performance of TBMs, 

essential for underground excavation. The analysis relies on four key datasets, encompassing soil 

composition, mechanical properties, and the sensitivity of TBM performance to different ingredients and 

features. In this section, we provide a quantitative interpretation of the soil composition (Table 1) and TBM 

performance metrics (Table 2), followed by a qualitative discussion of the impact of soil ingredients (Table 

3) and mechanical features (Table 4). 

Table 1 details the soil composition for various soil categories, focusing on the proportions of clay, silt, 

sand, gravel, and rock fragments. This classification has important implications for the performance of 

TBMs. For example, Category A-1-a (Gravelly soils with little to no fines) has a high proportion of gravel 

(50-70%) and sand (25-40%), which means it consists primarily of coarse, granular materials. These types of 

soils are easier to tunnel through as they are less cohesive and present less resistance to TBM operations. 

Category A-3 (Fine sands with negligible fines) contains 85-95% sand and only 0-10% fines, indicating that 

the material is loose, with minimal cohesion. These soils are also relatively easy for TBMs to advance 

through, requiring less force for excavation and often leading to faster tunneling rates. Category A-6 (Clayey 

soils with low liquid limit) has a high clay content (35-50%) and lower sand (5-20%) and gravel (0-5%) 

content. Soils with high clay content exhibit higher cohesion and resistance to cutting, leading to slower 

TBM advancement. This type of soil can lead to significant operational difficulties and slower excavation 

rates. 

 

Table 1. Soil Composition for Different Categories  

Category 

Name 
Description 

Clay 

(%) 

Silt 

(%) 

Sand 

(%) 

Gravel 

(%) 

Rock 

Fragments 

(%) 

A-1-a Gravelly soils with little to no fines. 0-5 0-10 25-40 50-70 0-10 

A-1-b Sandy soils with little to no fines. 0-5 0-10 60-85 10-30 0-5 

A-2-4 
Silty gravel and sand with low 

plasticity. 
5-10 15-35 40-60 10-30 0-10 

A-2-5 
Silty gravel and sand with high liquid 

limit. 
5-15 25-40 30-50 10-20 0-5 

A-2-6 
Clayey gravel and sand with low 

plasticity. 
10-20 10-20 40-55 15-30 0-10 

A-2-7 
Clayey gravel and sand with high 

liquid limit. 
20-35 15-25 25-40 10-20 0-5 

A-3 Fine sands with negligible fines. 0-5 0-10 85-95 0-5 0-0 

A-4 Silty soils with low liquid limit. 5-20 60-80 10-25 0-5 0-0 

A-5 Silty soils with high liquid limit. 5-20 60-80 10-25 0-5 0-0 

A-6 Clayey soils with low liquid limit. 35-50 20-40 5-20 0-5 0-0 

A-7-5 Clayey soils with lower plasticity. 40-60 20-35 5-15 0-5 0-0 

A-7-6 Clayey soils with higher plasticity. 50-70 20-30 5-15 0-5 0-0 

 
Table 2 provides mechanical properties such as friction angle, plasticity index, cohesion, and UCS, which 

influence TBM performance. The impact on TBM advance rates is illustrated by the range of m/day values 

provided for each soil category. 

Categories A-1-a and A-1-b both show a friction angle of 30-40° and a low PI (0-5), resulting in TBM 

advance rates between 50 and 200 m/day. These categories feature low cohesion and relatively easy 

excavation conditions, leading to higher operational efficiency. 

Category A-6 (Clayey soils with low liquid limit) has a low friction angle (15-25°), high PI (40-60), and 

low cohesion (10-40 kPa), contributing to a relatively slow TBM advance rate of 30-45 m/day. The high clay 

content and plasticity increase resistance, making excavation more challenging. 
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Category A-3 (Fine sands with negligible fines) shows a high friction angle (35-45°) and low PI (0-5), 

resulting in a strong TBM performance with an advance rate of 60-180 m/day. The soil is primarily sand, 

which is less cohesive and offers minimal resistance to excavation. 

 
Table 2.  Soil Properties and TBM Performance  

Category 

Name 

Friction Angle 

(°) 

Plasticity Index 

(PI) 

Cohesion 

(kPa) 

UCS 

(kPa) 

TBM Advance Rate 

(m/day) 

A-1-a 30-40 0-5 10-20 300-500 60-200 

A-1-b 30-40 0-5 10-20 300-500 50-180 

A-2-4 25-35 5-15 20-50 200-400 5-130 

A-2-5 25-35 15-25 20-60 250-500 50-120 

A-2-6 20-30 15-30 30-80 300-600 40-100 

A-2-7 20-30 25-40 40-100 350-700 40-60 

A-3 35-45 0-5 10-30 400-700 60-180 

A-4 20-30 30-50 5-20 100-200 40-60 

A-5 20-30 30-50 5-20 100-200 35-45 

A-6 15-25 40-60 10-40 50-150 30-45 

A-7-5 15-25 40-60 10-40 50-150 20-35 

A-7-6 10-20 50-70 10-30 30-100 10-25 

 

Three groups of soil types are displayed in the figure 2 according to their TBM advance rate:  

 

• Fast Progress: The fastest TBM advancement is possible with soil types classified as A-1 and 

A-3. 

• Moderate Progress: A-2 soil types display a variety of moderate rates of development, with 

some subcategories advancing more quickly than others.  

• Slow Progress: The slowest TBM advancement rates are found in soil types classified as A-4, 

A-5, A-6, and A-7. 

 

 
Fig. 2.  TBM upper limit advance rate in different type of soil 

 
Tables 3 and 4 provide a sensitivity analysis of soil ingredients and mechanical features on the TBM 

advance rate, showing how different soil properties influence excavation speed. Table 3 highlights that sand 

has the most significant positive effect, greatly enhancing TBM progress by reducing resistance and 

facilitating smoother excavation. Gravel also contributes positively, though its impact is noticeably lower. On 

the other hand, silt and rock fragments negatively affect TBM performance, with silt causing a considerable 

decline and rock fragments further reducing excavation efficiency. However, clay has the most restrictive 

impact, significantly slowing down the TBM due to its high plasticity and cohesive nature. This confirms that 

soils rich in clay present major excavation challenges. 
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Table 3. Sensitivity Analysis of Soil Ingredients  
Ingredient Impact on TBM Advance Rate (m/day) Peak sensitivity 

Sand (%) The most increasing factor +20 

Gravel (%) increase +4 

Rock Fragments (%) decrease -3 

Silt (%) decrease -15 

Clay (%) The most decreasing factor -35 

 

Table 4 examines mechanical properties and their role in TBM performance. The friction angle is the only 

feature that improves TBM progress, as higher values enhance soil stability and reduce machine resistance. 

In contrast, plasticity index has the strongest negative effect, indicating that highly plastic soils create major 

delays and demand greater excavation effort. Cohesion and UCS also contribute to a decline in TBM speed, 

though their influence is less dominant. These findings emphasize that soils with high plasticity and cohesion 

pose greater resistance, while softer, less cohesive materials allow for smoother excavation. 

 
Table 4. Sensitivity Analysis of Soil Mechanical Features  

Mechanical Feature Impact on TBM Advance Rate (m/day) Peak sensitivity 

Friction Angle increase +18 

Cohesion (kPa) decrease -3 

UCS (kPa) decrease -7 

Plasticity Index The most decreasing factor -30 

 

5. VALIDATION  

  

The results of this study align with existing research, reinforcing the well-established relationship 

between soil properties and TBM performance. Sand remains the most influential factor in improving 

excavation efficiency, as it reduces cohesion and allows the machine to advance with minimal resistance. 

These findings closely match previous studies, which also highlight sand as a key element in optimizing 

TBM performance. Similarly, gravel enhances tunneling efficiency, though to a lesser extent than sand, a 

pattern that is consistent with research on gravel-rich soils [15]. 

In contrast, clay and rock fragments present significant obstacles to TBM progress, with clay being 

particularly problematic. High clay content greatly reduces excavation efficiency, while rock fragments 

further impede progress by increasing resistance. These findings are in line with previous studies, which 

emphasize the negative impact of clay-rich and rocky soils on tunneling operations [16]. 

Additionally, the friction angle plays a crucial role in improving TBM performance, reinforcing past 

research that highlights its importance in stabilizing soil and reducing excavation resistance [16]. 

Overall, these findings validate the results of this study through comparison with previous academic 

research, confirming established trends in soil mechanics and TBM performance. 

 

6. CONCLUSION  

  

This study demonstrates the crucial role that soil composition and mechanical properties play in 

determining the performance of TBMs. Soils rich in clay and silt lead to slower advance rates due to 

increased cohesion and friction, whereas soils with high sand and gravel content provide better conditions for 

rapid tunneling. The sensitivity analysis further reveals that rock fragments and mechanical features such as 

friction angle, plasticity, cohesion, and UCS also significantly influence TBM efficiency. The validation of 

these findings against existing research confirms the robustness of our results and highlights the importance 

of considering these factors when planning tunneling operations. This information is valuable for engineers 

and decision-makers to optimize tunneling strategies and improve overall efficiency in underground 

construction projects. 
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