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ABSTRACT

This paper deals with the problem of integrated predictive maintenance (PdM) and master production
planning (MPP) in a real multi-machine packaging system. In contrast to prior work in which environmental
variables of machines and components or popular datasets were used, we employed event-based historical
data of machine failures. Four machine learning (ML) models for failure prediction were built with the Deep
Neural Network (DNN) outperforms the other. We proposed a dynamic linear programming (DLP) model to
determine optimal production strategies while minimizing costs. While previous studies concentrate mainly
on scheduling and planning, our research concentrates on the higher master production level. The
framework was tested using real-world data from a one-year data collection, and analyses of three scenarios
revealed different trade-offs between production strategies. This study provides practical evaluation in the
area of maintenance for professionals using failure prediction analysis. Moreover, the approach proposed in
this framework can help planners to decide which strategy they would like to implement based on the key
production and cost-related parameters specific to their business. In conclusion, this paper as a strong
methodology provides managerial insights for decision-makers and highlights future directions to advance
the adaptability of manufacturing processes in the Industry 4.0 environment.

Keywords: Master production planning, Predictive maintenance, Machine learning, Failure prediction,
Deep neural networks, Optimization

1. INTRODUCTION

In today's Fourth Industrial Revolution context, integration of impact factors that affect productivity and
cost of the supply chain is crucial. Machine failure and production planning as the basic components have
been developed in various technological models and research fields. When an unplanned downtime, caused
by a production line failure occurs, it often trims down the system’s productivity and renders the current
production plan obsolete. Therefore, Maintenance planning should be an integral part of the overall business
strategy and should be coordinated and scheduled with manufacturing activities [1]. This results in fostering
operational efficiency, assets durability, downtime minimization and finally overall productivity. It leaves no
doubt that both these two activities are correlated and both are holding an important position in increasing the
profit margin and the effectiveness of the company. It is worth mentioning that because they use same
resources, there are also in conflict with each other, but the synchronization between the production planning
and preventive maintenance (PM) activities may avoid failure, production delays and replanning problems
[2].

In the literature, there are four main maintenance strategies; Reactive Maintenance (RM), Scheduled
Maintenance (SM), Condition-Based Maintenance (CBM) and Predictive Maintenance (PdM). RM occurs
when a machine component is failed and can no longer operate. This strategy is risky from the point of view
of safety measures and higher costs to restore the catastrophic failures, and a higher amount of time to be
repaired [3]. SM is a strategy where maintenance is carried out at pre-decided time intervals. It comprises
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inspections, adjustments, and planned shutdowns. The SM strategy’s primary goals are to reduce the cost of
reactive maintenance and machine failures. The repair cost, however, is generally less in SM compared to
RM. Condition-based maintenance involves continuously monitoring and replacing an asset when it stops
functioning normally [3]. In this research, we integrated master production planning (MPP) with failure
prediction, specifically predictive maintenance (PdM). Using historical event-based machine failure data
enabled us to predict when failures will occur and when maintenance is needed. This strategy supports lean
manufacturing [4]. By analyzing historical failure data, this strategy predicts maintenance requirements,
reduces maintenance expenses and therefore improves overall operational efficiency and durability of
machines through correct utilization of resources. This gives the production scheduling experts information
on the maintenance schedules thereby allowing plans to be put in practice on the machines at appropriate
times. This reduces occurrence of interruptions to the production process, the likelihood of unexpected
downtimes in future, and enables better control on capacity losses. Moreover, this approach is helpful in
making more accurate and realistic decisions. Overall, MPP integrated with machine failures would increase
production line efficiency, optimize resource consumptions, and lead to high customer satisfaction.

1.1 Industry application

Research on failure prediction and production integration has highlighted applications in industries such
as aircraft, data center, oil & gas, automotive and manufacturing industries. Dangut et al. [5] suggested a
Machine Learning (ML) approach to predict extremely rare aircraft component failure. A roadmap for
maintenance planning extracted from sensor measurements using Remaining Useful Life (RUL) prognostics
was proposed by Lee & Mitici [6] to limit the wasted life of aircraft turbofan engines. Gour & Waoo [7]
introduced tree-based algorithms for classifying and forecasting the likelihood of hard drive failures in the
data center. Surveys such as that conducted by Arena et al. [8] have analyzed the historical data on
maintenance alerts of the components of a revamping topping plant belonging to an industrial group in oil &
gas industry. Zhai et al. [9] assessed the applicability of their operation-specific health prognostics approach
in a real industrial use case, a proprietary dataset of multifunctional machining centers for automotive
component manufacturing. Hulbert et al [10] presented a method to predict impending vehicle system faults
by analyzing sensor data in the automotive industry for improving diagnostics and preventing errors. But, a
large body of literature has investigated integrated predictive maintenance and production planning focused
on the manufacturing sector to reduce costs and downtime. Seminal studies in this area were the works of
Cassady & Kutanoglu [11], Sortrakul et al. [12], Aghezzaf et al. [13], Najid et al. [1] and Fitouhi &
Nourelfath [2] that simultaneously determined production scheduling and preventive maintenance planning
decisions for small size problems and attempted to show effectiveness of proposed integrated models. Vast
majority of recent research into the integration of production and maintenance activities in the manufacturing
sector such as Sobaszek et al. [14], Zonta et al. [15], Leukel et al [16], Sengottaiyan et al [17], Nasser & Al-
khazraji [18], Shoorkand et al [19], Tortora et al. [20], Pinciroli et al. [21] and Shoorkand et al [22] has
focused on data-driven approach being solved by ML algorithms that can be categorized as new generation of
studies.

1.2 Model-based Approach

A significant body of research on integrated models utilized model-based methodologies. Cassady &
Kutanoglu [11] and Aghezzaf et al. [13] and Aghezzaf & Najid [23] developed a mathematical model for
integrated production scheduling and PM planning problem. The problem of determining optimal integrated
production plan and date of preventive maintenance in a multi items capacitated lot sizing problem with
demand shortage was formulated by Najid et al. [1]. Similarly, Fitouhi & Nourelfath [2] proposed a model
determines simultaneously the optimal production plan and the instants of non-cyclical preventive
maintenance actions under demand fluctuation for a single machine. Alimian et al. [24] presented a robust
integrated mathematical model for production and preventive maintenance planning in multi-state systems,
considering uncertain demand and common cause failures.

1.3 Machine Learning Approach

In recent years, there has been an increasing amount of literature on using ML techniques for predictive
maintenance. It is a powerful tool for failure prediction [20]. ML algorithms enable the development of
models from existing data to create models that can forecast new data outcomes. ML approaches, classified
into unsupervised, semi-supervised, supervised, and reinforcement learning, have been applied in several
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tasks related to maintenance, such as failure detection, failure diagnosis, condition monitoring, remaining
useful life, and failure prediction [20]. In [8], three ML algorithms: Linear regression, ARIMA and Regressor
Based on Polynomial Integration were applied to provide strategic support for the definition of an adequate
maintenance plan through using simple natural language processing techniques and performing a clustering.
Smart sensors data have been pre-processed in [24] to serve the evaluation of four regression ML models;
Bayesian Linear Regression, Poisson Regression, Neural Network Regression, and Random Forest. In [26],
an adaptive ARIMA ML model was proposed to support adaptive error prediction through a varying
windowing technique. Therefore, future breakdown before its occurrence by forecasting the important
signature parameters in the machinery can be predicted. Wang et al. [27] used a Bayesian algorithm for
online RUL prediction of rotating machinery components in real time. The authors in [1], [19] and [28],
collected real-world data for training and testing a Long Short-Term Memory algorithm to estimate the
remaining useful life of the monitored equipment. The study in [20] used two ML methods, Random Forest
(RF) and Decision Tree (DT), to predict the failure based on binary classification with a cost-oriented
approach.

1.4 Data source

Industry 4.0 is based on utilizing nine technologies, including simulation, industrial internet, vertical and
horizontal system integration, cybersecurity, cloud computing, big data and analytics, augmented reality,
advanced robotics, and additive manufacturing. Furthermore, IT systems, workpieces, machines, and sensors
are all linked with a value chain that goes above a single company [4]. Such interlinked systems can allow for
interaction and assess the data for predicting the operational performance levels of an enterprise [4]. For
instance, a company can plan and do predictive maintenance at the most proper time using big data and ML
techniques. In recent years, widespread use of data-driven approaches is seen for predicting machine
breakdowns, identifying the main causes, and recommending the most effective actions to increase
performance. These methods improve accuracy, and enhance decision-making leading to greater operational
efficiency and cost savings. In the literature, this is done by considering possible environmental variables (for
instance, torque, strength, temperature, vibration, pressure, lubrication levels, etc.) or utilizing well-known
datasets including those that could trigger a failure. In reference [14], the historical failure times including the
data on the history of maintenance and repair of technological machines were used. Condition-monitored
data (temperature, vibration and pressure) for the plant’s critical equipment components namely electric
motor, gear and blower of a single-stage centrifugal compressor, were collected in [29]. Singh et al. [30]
employed a failure dataset from the National Aeronautics and Space Agency (NASA) to forecast potential
faults of rolling element bearings. Dangut et al. [5] used real log-based aircraft central maintenance system
data, which is not often used for predictive maintenance modelling. The frameworks in [7], [9], [20], and [25]
are validated on the well-known public dataset of Backblaze, the C-MAPSS FDO002 dataset, the time-series
dataset of Azure blob storage and Microsoft Azure ML platform respectively. A benchmarking subset data,
FDO001, developed by NASA was used in [19] and [22] that contains a training and testing set which consists
of 26 columns, including the unit numbers (Id), cycle numbers, three operational parameters, and 21 data of
various sensors. In [8], the data of historical maintenance alerts consist of ‘“Notices” and “ODM”
(maintenance orders) where the features of interest for analysis are the identification number of the notice,
description, date of the event, technical office and the name of equipment. In [16], Operational data of
fourteen components of the milling machine for about 25 months were available, and all observations were
recorded with a frequency of 30 seconds. The time-series data in [18] comprised historical data on telemetry,
machines, errors, and failures, representing various events from 100 different machines on an hourly basis
over a one-year period. Lee & Mitici [6] used the degradation data of aircraft turbofan engines obtained by
NASA, which consists of data subsets considering a specific number of fault modes and operating conditions.
In reference [28], Sensor values that monitor different parameters of a production machine collected every
five milliseconds were stored in a local database in the motion controller and then transferred to a PLC
database and finally data values were stored in the historical database. Authors in [15] used Microsoft Azure
Al-based PdM dataset providing telemetry readings taken every hour on voltage, rotation, pressure, and
vibration sensors for several machines. Microsoft's real-world example is the source of the data utilized in
[17] where machine characteristics and telemetric, such as power, temperature and rotational sensor readings,
are also included in the collection for a total of 100 workstations through a whole year gathered hourly for
every device. The subject of [31] is a DJI M600 multirotor Unmanned Aircraft System, which has 6 rotors
with two blades each and it is controlled by a DJI N3 autopilot in a closed laboratory environment. Its main
sensor contains an accelerometer, a gyroscope and a magnetometer and is able to capture data from all axis.
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In the proposed system of [26], the value of oil contamination is measured using the sensor deployed in the
hydraulic unit of a grey casting foundry on a molding line, once in every 3 minutes of interval through a
wireless sensor network. The oil contamination sensor measures the oil contamination level in mA, which is
proportional to the oil contamination level of the NAS 1638 standard. The dataset in [21] contains records
from sensors installed on different components of a wrapping machine, a blood refrigerator and a nitrogen
generator. The dataset includes information from IoT sensors that measure various variables such as
temperatures, motor frequencies, platform speeds, energy consumption and the nitrogen and CMS air
pressure.

1.5 Key Findings

Initial studies in integrated predictive maintenance and production planning literature emphasize the
effectiveness of the proposed models such as the works of [1], [2], [11] and [13]. Most researchers have
highlighted the effectiveness of their solution approach. In [12], the proposed genetic algorithm was
introduced as an effective method to solve the integrated problem. Reference [21] demonstrates effectiveness
of DL approaches in classifying data with diverse time-dependent patterns preceding a failure. The
evaluation results show the effectiveness of the proposed hybrid CNN-LSTM model for PdM problem in
[17], [18] and [22] due to its higher prediction accuracy. Key contributions in [9] and [15] are utilizing
efficient deep learning approach to accurately predict machine failures, thereby enabling predictive
maintenance planning. In [25], Random Forest outperformed other ML algorithms with an average R2 of 0.96
as the most exciting finding. Redundant and preventive stoppages in the production line were reduced in [28]
at the same time, decreasing the cost of maintenance operations based on LSTM-autoencoders. As another
distinctive contribution, a comprehensive decision support system was presented for a complex cyber-
physical production system in [32], which enables mapping the entire complexity of real-world production
systems and supports production and maintenance planners in the multi-criteria decision-making process.
Two novel studies, [5] and [8], employed natural language processing techniques to categorize faults and
create structured data to enhance the prediction accuracy by ML applications. The proposed process in [20]
differs from pre-existing ones due to a cost-oriented approach through which ML algorithm for failure
prediction is chosen to minimize maintenance costs through a cost-based selection phase. In reference [31], a
new method, called mean peak frequency, was proposed to estimate RUL using vibration data collected from
a multi-rotor UAS to assess degradation. The main finding in [16] was understanding of how sliding window
selection can effectively be used for ML-based failure prediction. The study in [29] found that the
components with the shortest life expectancy require more frequent monitoring and maintenance, besides the
fact that operating speed and functionality significantly affect the deterioration rates of all components. [14]
focuses on utilizing historical data and effective prediction algorithms to forecast machine failures,
integrating TBM principles with probabilistic approaches to enhance the reliability and efficiency of multi-
machine manufacturing systems. Development of a framework that achieves dynamic decision-making and
cost minimization through the integration of deep learning with mathematical programming is considered to
be the main success in reference [19]. The research in [7] differentiates itself by integrating ensemble
learning with deep neural networks to improve the accuracy of failure predictions, especially in handling
imbalanced data. New avenues are opened in [6], applying probabilistic RUL prognostics to optimize
maintenance decisions through formulating the RUL estimation as a Markov decision process (MDP).

Motivated by the advantages of integrating failure prediction and production planning, the present study
aims to develop a framework to determine the optimal master production decisions and the anticipated
maintenance activities under certain demands in a real multi-machine manufacturing system of packaging
household polymer products. There are several important areas where this study makes an original
contribution. The importance of this study is that according to real event-based historical time-series failure
data collected over the course of a year, categorized into machine specifications, failure information, time-
related data and the health condition of the production machines for PdM purposes has been predicted.
Finally, the optimal production planning strategy is established for the entire planning horizon. This paper is
organized into 6 sections. The remaining part of the paper proceeds as follows. Section 2 describes the
problem, presents the integrated framework and overview of the used ML algorithms. Additionally, the
dynamic mathematical modeling for the problem is presented. Section 3 illustrates using historical data to
validate our ML algorithms. Section 4 discusses the results of a numerical example for the scenarios, where
the proposed framework is employed to predict the failure, and the optimization model is implemented to
determine optimal values of decision variables across the planning horizon. In section 5, we attempt to
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present the main objectives of this research, which are applicable in industries, especially in the field of
decision-making. The conclusions along with future research directions are summarized in Section 6.

2. PROPOSED INTEGRATED FRAMEWORK

In this study, a plant produces a variety of plastic-based household and commercial products using a
multi-machine packaging system. ML models predict machine failures in the planning horizon. And a linear
programming model optimizes production while managing machine failures to minimize costs. In this
integrated model, the aim is to predict failure, improve maintenance engineering, and balance in-house and
outsourced production values considering probable delayed orders and capacity extensions.

In contrast to popular ML algorithms that learn the health patterns of machines to predict the RUL
according to collected data by sensors, we used historical event-based time-series failure data of machines to
predict our binary target variable, will fail soon (WFS), in the next planning periods. The WFS threshold is
set to 60 minutes, meaning the target variable is set to 1, indicating a failure soon, if downtime exceeds 60
minutes. Otherwise, it is set to 0. Setting a threshold for the WFS highlights the focus of the proposed
framework on preventing and managing the most disruptive and critical downtime events, which are most
relevant to operational efficiency and resource management. Longer downtimes might point toward
significant problems or critical failures in the machinery which need more time, technical priority and
attention to solve, so predicting and avoiding them is more crucial than responding to every minor issue.
Predicting WFS with high performance plays a critical role in reducing the overall downtime and optimizing
maintenance schedules. To uncover hidden patterns, predict accurately, and make more efficient and timely
maintenance decisions, we used ML techniques in line with the literature.

Our ML algorithms take time-series data as inputs to extract the representations of the machine’s health
condition. Given that our data have been collected with a great level of detail by the maintenance department,
the desired output in the first step (failure prediction) is the day and duration of failure, categorized by the
machine coding and type of failure in the system and its components. In other words, in the first stage, as
seen in Table 1, we aim to determine which machine and components will fail on what date, for how many
minutes, and due to what reason.

In the second stage, (master planning), based on the predicted downtime obtained for the machines in the
first step, the actual remaining usable capacity of the machines has been calculated. This means that the
proportion of time lost to total available machine time has been computed and then subtracted from the total
capacity. For instance, this deterioration in the model is presented as a reduction of production lines
capacities in function of the time evolution in [33]. According to this capacity and the demand for each
product within the planning horizon, we determined the number of products that could be produced in-house,
outsourced, backordered or produced with extended capacity through our LP model.

2.1 Plant Description

The Zarin plant is one of the manufacturing units in Tehran, Iran, where the main product groups
produced include Sheet Freezer Bag, Freezer Bag Roll, Dispenser Box Freezer Bag, Garbage Bag Roll, Easy
Tie Garbage Bag, Plastic Disposable Tablecloth and Disposable Glove. The main goal in the sewing hall is to
manufacture convenience items designed for household and commercial use from semi-finished products that
have come from the previous hall, production hall. These semi-finished products are typically made from
various types of plastic materials. In the sewing multi-machine system, different advanced packaging
machines equipped with servo drive motors and PLC systems perform perforating, sewing, and cutting
operations with high efficiency according to the dimensions of the desired products. These semi-automatic
machines efficiently process materials across multiple lines, handle various roll widths, and produce high
volumes of final products per hour. Automation including pneumatic jacks and inverter controls ensures
precise, high-speed production with minimal manual intervention. The functioning of the machines consists
of cycles with irregular lengths, depending on the size, weight, dimensions and thickness of the products. A
cycle consists of five steps:

1. Loading the semi-finished rolls onto the machine's opener
2. Guiding the film towards the sewing and cutting section
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3. Sewing the film along the specified lines and at the same time cutting or perforating to the required
size with a cutting or perforating blade
4. Counting and collecting the finished bags after a specified number
5. Batching and packaging the finished product for easy separation by the operator
Table 1. Failure prediction of 5™ month
Machine System-Wide Failure (mins) Shift
Date Coding Failure Component Failure Start Time Finish Time
Mechanical ; : \ : \ 600 Night
Perforating Blade [Timestamp('2023-05- [Timestamp('2023-05-
29/05/2023  SCA101 Failure 29 22:00:00)] 29 12:00:00)]
Mechanical : \ : \ 150 Day
. . [Timestamp('2023-05-  [Timestamp('2023-05-
09/05/2023  SCA106 Settings Failure 09 15:00:00] 09 17:30:00)]
Mechanical ; \ ; \ 720 Night
Collector Plug [Timestamp('2023-05-  [Timestamp('2023-05-
11/05/2023  SCA108 Failure 11 20:00:00)] 11 08:00:00)]
Mechanical ; \ ; \ 120 Day
. . [Timestamp('2023-05-  [Timestamp('2023-05-
21/05/2023 SCA108 Settings Failure 21 09:00:00Y] 21 11:00:00')]
Mechanical : \ : \ 90 Night
. . [Timestamp('2023-05-  [Timestamp('2023-05-
27/05/2023 SCA108 Fireproof Failure 27 20:00:00)] 27 21:30:00)]
Mechanical ’ \ ’ \ 100 Day
. . [Timestamp('2023-05-  [Timestamp('2023-05-
13/05/2023 SCA201 Settings Failure 13 08:00:00)] 13 09:40:00)]
Mechanical : . 3 . 3 540 Day
Plastic Roller [Timestamp('2023-05-  [Timestamp('2023-05-
241052023 SCA201 Failure 24 08:00:00)] 24.17:00:00)]
Mechanical : . 3 . 3 120 Day
Plastic Roller [Timestamp('2023-05-  [Timestamp('2023-05-
31/05/2023  SCA201 Failure 31 08:00:00)] 31 10:00:00)]
Electrical : \ : \ 120 Day
. [Timestamp('2023-05-  [Timestamp('2023-05-
20/05/2023  SCA202 SSR Failure 20 08:00:009] 20 10:00:009]
Mechanical : \ : \ 240 Day
. [Timestamp('2023-05-  [Timestamp('2023-05-
21/05/2023  SCA202 Glue Failure 21 08:00:00)] 21 12:00:00)]
Electrical ; ; ; \ ; \ 480 Day
Fault in Electrical [Timestamp('2023-05- [Timestamp('2023-05-
11/05/2023  SCA301 Panel 11 08:00:00)] 11 14:00:00)]
Mechanical ; \ ; \ 420 Day
Metal Roller [Timestamp('2023-05-  [Timestamp('2023-05-
22/05/2023  SCA301 Failure 22 09:00:00)] 22 14:00:00)]
Mechanical . . 240 Day
. [Timestamp('2023-05-  [Timestamp('2023-05-
06/05/2023  SCA302 Blade Failure 06 10:00:001] 06 14:00:001)]
Mechanical . A [Timestamp('2023-05-  [Timestamp('2023-05- 90 Day
27/05/2023  SCA303 Settings Failure 27 08:30:00)] 27 10:00:00)]
Mechanical : ’ ) ’ ) 90 Night
Cutting Blade [Timestamp('2023-05-  [Timestamp('2023-05-
27/05/2023 - SCA304 Failure 27 21:30:00)] 27 23:00:00)]
Mechanical ; ; g 05. ; g 05. 940 Day
31/05/2023 SCA305 Cutting Blade [Timestamp('2023-05-  [Timestamp('2023-05

Failure 31 08:00:00%] 31 23:40:00%]

2.2 Assumptions
The following assumptions are taken into account.

a.

https://cem.cdsts.ir

The manufacturing system consists of several parallel machines, each group of which is capable of
producing a specific group of products.

Maintenance actions restore the machine to an ‘as-good-as new state’.

Repair should be carried out as soon as the failure occurs and the factory's technical personnel
possess adequate knowledge for fixing any type of repair.

The spare parts for machine components that need replacement are available in the spare parts
warehouse.

The planning time horizon initially begins with a new or as good as new machine.

The demand for products in each planning period might exceed the factory's production capacity.
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g. Each machine has the ability to process a specific group of products, and the nominal capacity of the
machines is the same in each planning period

h. Part of the demand that cannot be met in the current period will be fulfilled through outsourcing, but
outsourcing capacity is limited for each product in each planning period.

i. Any unmet demand beyond both in-house and outsourcing capacity will be placed on backorder and
fulfilled in the following periods, when capacity becomes available.

j. There is a lead time for backorders, meaning they cannot be fulfilled immediately in the next period,
but only not later than a certain number of months.

k. Backorders incur increasing penalties the longer they remain unfulfilled.

I.  The longer a backorder remains unfulfilled, the higher the penalty. This penalty increases over time
to reflect customer dissatisfaction due to delayed deliveries. The penalty multiplier is set 1.2 in the
model which means that if a backorder is not fulfilled in the specified lead time, the penalty cost
will increase by 20% over the base backorder cost.

m. There are no backorders carried over from months prior to the start of the planning horizon.

n. There is also an opportunity to extend the in-house production capacity by adding additional
machines. This capacity is purchased at a per unit cost and increases the amount of capacity
available in other periods in the future.

0. Capacity extensions are dynamic and can be added at any month. When the extension is made, the
increased capacity is available for all future periods.

p. Backorders older than 2 months that cannot be completed by in-house production or outsourcing
must be finished through capacity extension.

g. Capacity loss is resulted from those machine failures that exceed the WFS threshold.

2.3 Problem description

In the assumed multi-machine production system, the machines are subject to random failures. When an
unexpected machine failure happens, a maintenance action is performed, meaning the machine is returned to
working condition without affecting its operational age. Alternatively, if necessary, the pneumatic, electrical,
or mechanical components should be replaced. Let us consider a set of machines m € {1,2, ..., M} that are
responsible for sewing a set of group products p € {1, 2, ..., P} over a defined finite planning horizon T with t
planning periods, t = {1, 2, ..., T}. Each period has the same fixed length L. The capacity of machines during
each planning period is the same. Parameters may vary based on production characteristic and planning
tactics of the that specific business. For instance, in the numerical example, we set T=12. A pre-defined
demand for product p in month t, d,, ., should be met and any unmet demand in each planning period must be
produced through outsourcing. If both in-house and outsourcing capacities are insufficient, the unmet
demand will be placed on backorder and fulfilled in the following periods when capacity becomes available
There is a lead time for fulfilling backorders. Backorders incur penalties that increase as the demand remains
unfulfilled for a longer period.

If the available in-house and outsourcing capacities are inadequate, the factory can increase in-house
capacity by adding new machines that would boost the factory’s production capacity in later time periods.
Thus, the capacity and then flexibility can be increased to meet the upper future demand or to reduce
backorders.

2.4 ML Algorithms

Different ML techniques are used to predict the machine health state that is stated in a binary-state. The
proposed approach presents a data-based failure prediction model for a production system that can be
incorporated into master planning. By collecting real historical data from the past year's machine failures in
the designed format, the proposed framework helped to calculate the remaining in-house production capacity
for product groups in each month, r_(p,t). Four ML approaches including deep neural network (DNN),
Logistic Regression (LR), Support Vector Machine (SVM) and CatBoost (CB) are used to predict timing and
type of failures in each planning periods.

2.4.1 SVM Model

SVM is a common supervised ML algorithm that is used for classification and regression analysis. The
goal in this algorithm is to find a hyperplane that separates data points of different classes in a high-
dimensional space. In other words, SVM attempts to find the optimal decision boundary that maximizes the
margin, or the distance between the decision boundary and the nearest data points of each class. To
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accomplish this, SVM maps the data into a higher-dimensional feature space where it becomes easier to find
a hyperplane that can separate the data [4]. Pinciroli et al. [21] predicted system failures utilizing six
algorithms including support vector machine where results were also compared on multivariate time series.
In reference [21], the impacts of different reading and prediction windows were tested for SVM, considering
accuracy, precision, recall, and F1-score metrics.

In this implementation, SVM is employed particularly to predict potential failures to minimize unplanned
downtime. After preprocessing the data and feature engineering, we applied PCA to reduce dimensionality
while retaining the majority of the variance, preventing overfitting. In order to ensure optimal performance,
we tuned the hyperparameters using GridSearch with cross-validation. After training and evaluation with
regular performance metrics, it is used to predict machine failures over specific months, allowing for early
intervention and maintenance planning.

2.4.2 Logistic Regression (LR) Model

The LR model is a common mathematical model in ML, and it belongs to probability type regression to
describe and infer the relationship between multi-class dependent variables and a set of explanatory
variables. The logistic function of the LR is Sigmoid function, which constrains the logistic probability of an
event occurrence between 0 and 1 [19]. Experimental results in [21] demonstrate that basic, general-purpose
algorithms, such as logistic regression, already achieve acceptable performances on complex datasets, where
complexity is the mean of spectral entropies. Feng et al. [34] presented RUL estimation of aircraft engine by
the combination of AEKFOS-ELM and logistic regression (LR) model and assessed its effectiveness on
NASA engine degradation datasets.

In this study, to boost the model's performance, hyperparameter tuning is conducted using GridSearch,
focusing on optimizing the regularization strength and solver selection for the logistic regression model. The
best model, selected through cross-validation, is assessed using various performance metrics, which makes
the evaluation more reliable. The final model is applied for a specific number of months to predict failures
and plan maintenance thus determining the particular machines most prone to fail and which months are
likely to have failures.

2.4.3 Deep Neural Network (DNN) Model

Neural networks and their subdivisions have been a major area of interest within the field of integrating
predictive maintenance and production planning. For all models, dense layers were used with Softmax
activation function, and hidden layers were used with Rectified Linear Activation (ReLU). All deep learning
and deep hybrid learning models were trained for more than 14 epochs [4]. Authors in [17], [18] and [21]
employed a new hybrid deep learning method; CNN-LSTM to effectively predict the health condition of each
machine. In reference [9], a generative deep learning model based on the conditional variational autoencoder
(CVAE) was proposed for a PdM-integrated production scheduling problem using large-scale industrial
condition monitoring data. In reference [15], several models based on deep neural networks (DNN) and
recurrent neural networks (RNN) were compared, using criteria based on visual analysis, errors, regression
coefficient, and accuracy measures. Gour & Waoo [7] implemented an ensemble learning algorithm with a
deep learning model to predict short-term and long-term health and failure. By incorporating the Light GBM,
random forest and decision tree, a novel Ensemble Learning model combined with Deep Neural Network
(EnDNN) has been framed. Aghamohmmadghasem et al. [33] utilized a deep reinforcement learning
approach to solve the optimal maintenance planning problem in the inland waterway transportation system.

The DNN model which is proposed in this study comprises of multiple fully connected layers with ReLU
activation functions to identify complex patterns in the data. It leverages features such as lagged emissions,
rolling statistics, and time-based features to understand the changes in machine’s behavior. Ensuring the
model generalizes well to new data, regularization techniques such as dropout and early stopping are used to
prevent overfitting. The model's predictions provide insights into potential failures across all machines
throughout the entire planning horizon.

2.4.4 CatBoost Model

CatBoost is a new gradient boosting algorithm that successfully works with categorical features with the
lowest information loss. CatBoost differs from other gradient boosting algorithms. First, it uses ordered
boosting, an efficient modification of gradient boosting algorithms, to overcome the problem of target
leakage. Second, this algorithm is useful on small datasets. Third, CatBoost can handle categorical features.
This handling is usually completed at the preprocessing phase and essentially consists of replacing the
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original categorical variables with one or more numerical values [36]. A search on the literature of machine
failure and production planning integration reveals that no previous study has used CatBoost. In this research,
the CatBoost model is tailored for predicting machine failures in a one-year planning horizon. After extensive
data preparation, including the creation of lagged and rolling statistical features to capture time-based
patterns in machine performance, it is then fine-tuned with strong regularization and cross-validated using
Stratified K-Folds to ensure robustness. The model is further assessed on key performance metrics
establishing that the model is able to detect machines likely to fail next, so that preventive maintenance can
be planned.

2.5 Master Production Planning (MPP)

The main aim in MPP is to provide a clear production plan in the planning horizon that guides
manufacturing activities, ensuring that the right product groups are made in the right quantities and at the
right time to optimize the objective functions. It also aids in satisfying the customer demand, the management
of inventory and minimizing production interuptions. In a production setting, fluctuating resource capacity
restricts production line performance, and ignoring this fact renders planning inapplicable [37]. Although
Master Production Scheduling (MPS) has been studied and used by both academia and industries for quite a
long time, the real complexity involved in making a master plan when capacity is limited, when products
have the flexibility of being made at different production lines, and when performance goals are tight and
conflicting [38]. Reference [39] can be considered as a step of applying machine learning on master
production scheduling, which has not gained any attention yet. MPP coordinates production activities with
business goals, providing a strategic framework for managing demand, actual capacity, and inventory. In the
current research work, we addressed the MPP problem in the context of the make to order (MTO) production
environment. The objective is to find the optimal production quantity of each product group in-house and
through outsourcing considering capacity fluctuation of the machines due to failures with the minimum cost
imposed by the company considering that capacity extension and backorder are allowed.

2.6 Mathematical Modeling
A linear programming model has been introduced incorporating in-house and outsourcing production,
dynamic capacity extension, and backorders with lead time as shown in Figure 1. The following notations are
used in the model.
Decision Variables:

. x;',’} : Amount of product p to produce in-house in month t

e x,'*: Amount of product p to outsource in month t

e by, : Backorder of product p in month t, carried over from —k months ago (for k=1,2 where
lead time is 2 months)

. cf,fg‘: Capacity extension for in-house production of product p in month t, which takes effect in
future months (i.e., the number of additional units of capacity added)

Parameters:

e d,.: Demand for product p in month t

e 1,,:Remaining in-house production capacity for product p in month t

e 0, . Outsourcing capacity for product p in month t

. c{fft : In-house production cost per unit for product p in month t

e cp'*: Outsourcing production cost per unit for product p in month t

e ), :Backorder cost per unit of product p in month t, with penalties increasing over time
e ;¥ Capacity extension cost per unit for product p

e lead_time = 2: Lead time for backorders in numerical example (in months)

e penalty multiplier: Penalty multiplier for delayed backorders, increasing with time

The objective function (Z) in this integrated model aims to minimize the summation of the total cost,
as shown in Eqg. (1)
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Lead Time
I.Tl out out b k ext ext
Z= ZZ(C pt . + Z Cp,t . bp,t (penaltYmultlpher) + C . Cp,t (1)
teT peP k=1

The first constraint (Eq. (2)) guarantees that the sum of the production (in-house and outsourced) plus
backorders from previous months meet demand in each month.

Lead Time

X+ x4 Z by, = dp. VpeP,VteT (2)

In-House capacity constraint is presented in Eq. (3), where the amount produced in- house cannot
exceed the remaining in-house capacity that resulted from our prediction ML algorithms, ¢ plus any
capacity extension. The summation, Y:5_; , refers to all months t, from month 1 to the current month t, in the
planning horizon.

X< o+ Z c&t VY peP,V teT 3)

As mentioned in assumptions, Outsourcing is limited by outsourcing capacity.
xptt < o0,; VDpeP,VteT 4
Backorders for a product carried over from previous months should align with the backorders available
from

earlier months (reflecting a lead time of 2 months). It is shown in Eq. (5) where b,.and b}, are
backorders carried over from 1 and 2 month ago, respectively.

byt = bjr—1, bpr = byey VpeP,V teT (5)
Eq. (6) ensures that if backorders are older than 2 months, they must be met by capacity extension.
byt < ¢t V peP ,V teT (6)
Amount of in-house and outsourced production cannot be negative, as well as backorders.
X, x4, by, b2, > 0 VpeP,V teT (7N
Additionally, non-negativity of capacity extensions is shown in the Eq. (8).
g =20 V peP ,V teT (8)
This linear programming (LP) model minimizes the total cost incurred from in-house production,
outsourcing, backorders with penalties, and capacity extensions, subject to capacity constraints and demand
satisfaction. The decision variables xm and xJ%" determine how much of each product is produced in-house
and outsourced, respectively, while adherlng to production capacity, cost limitations and backorder lead
times. b,’,‘,t and ¢, determine the amounts of backorders carried over from previous months and the capacity
extensions added to increase future in-house production, in corresponding order, while accounting for lead
time constraints, backorder penalties, and the need to expand production capacity to meet future demand.

A critical aspect of the problem is that a portion of the in-house production capacity has been lost due to
predicted machine failures, causing the remaining capacity, 7, . , to fall below the nominal capacity of the
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machines. This reduction in capacity is predicted through ML models, which forecast potential machine
failures over the planning horizon. To mitigate capacity shortages, the model allows for capacity extensions,

cyit, which provides flexibility to adjust future in-house production capacity.
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Fig. 1. Dynamic linear programming model structure diagram

2.7 Dynamic Process Flow
The model’s ability to respond in fluctuating conditions in the production environment through a

combination of lead time considerations, backorders, capacity adjustments, and outsourcing demonstrate the
dynamic nature of the model. Backorders which introduce a delay in meeting customer demand because of
insufficient production or capacity are vital elements in the model. Backorders are dynamically tracked
across multiple months according to predetermined lead time of two months, reflecting real-world delays in
this business. This is mathematically shown through the backorder variables b_(p,t)*1 and b_(p,t)2, which
represent the backorders carried over from 1 and 2 months ago, respectively. This approach ensures that any
unmet demand in a given month m will be carried over and penalized, and the penalty factor increases over
time. The backorder flow is thus no constant, it highlights both the unmet demand and the delay penalties,
which force organizations to ensure timely production to minimize their total costs. Another dynamic feature
is the model’s ability to adjust in-house production capacity regarding the predicted failures of the machines
and demand fluctuations. In-house production capacity, r_(p,t)"in , is sensitive to the predicted failures and
could decline. These reductions lead to the fact that the nominal capacity may not always be available, which
explains why flexibility in production is significant. To address capacity shortages, the model gives the
possibility to the possibility of capacity extensions, c_(p,t)"ext, which allow for the dynamic expansion of
future production capacity. We combine in-house production and outsourcing to allow for flexibility.
Outsourcing helps quickly solve capacity shortages, but at a potentially higher cost. The model identifies the
optimal level of in-house production and outsourcing so as to meet the demand without incurring high

backorder costs and increasing cost.

3. NUMERICAL EXAMPLE/CASE STUDY
3.1 Dataset Description
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To validate the proposed framework and mathematical model, historical data collected from the daily
emergency forms were used: they were available in the maintenance software application that was filled by
the expert in the maintenance department from April 2023 to March 2024. An example of the report from the
maintenance software for the 26th of April is presented in Excel format that is shown in Table 2.

Table 2. Software report

Machine  System-wide Component Maintenance Start Finish  Failure (min) Maintenance Maintenance Shift
Date Coding Failure Failure Action Time Time (min) Responsible

2610412023 gopppp  Mechanical  pipenroof Failure  REPlaCEMeNt  gg.50:00 06:15:00 % 20 Head Shift Night
26/04/2023 SCA301  Mechanical  Settings Failure ~ Resetup 08:00:00 09:30:00 90 60 Head Shift Day
2610412023 gcpp02  Mechanical  gertings Failure  RESEWUP 09:00:00 12:00:00 180 120 Head Shift Day
26/04/2023 g pzgp  Mechanical e paitgre REPIACEMENt 00000 12:30:00 150 120 Supervisor .
26/04/2023  gcpgo1  Mechanical  Biade Failure Replacement  20:00:00 23:00:00 180 120 Head Shift Night

The report for the mentioned time period represents downtime events of 22 machines in 15 attributes. The
attributes describing the machines were segmented into three categories as follows: machine specification
(machine coding), failure information (including system-wide and component failures, maintenance actions
and related responsible) and time values such as date, shift, start time, finish time, duration of downtime and
net maintenance time which are used for developing our ML algorithms to forecast future failures.

As demonstrated in Figure 2, study starts with collecting data and ends with the evaluation of the
trained ML models using performance metrics.

Data Data pre- Feature Model Model
collection Complete processing | . .| engineerin |, . training Trainsd evaluation
T data data data model T
Data stream Evaluated model

Fig. 2. Data procedures

3.2 Data Collection
The dataset used for the numerical example was obtained from operational data of the maintenance
software application gathered over a year. Converting it to an Excel file, an initial failure dataframe was built.

3.3 Data Pre-Processing

Because each row is considered unique when at least one element in each column is different, the first
occurrence of duplicated rows was kept and all others were removed. The Date, Start Time, and Finish Time
columns were converted to the proper date-time format to ensure consistency and coerce invalid dates or
times to NaT values. After creating the new unified Time columns, the original columns were dropped.
Another key step in data cleansing is dropping rows where critical fields are missing or have null values.
Finally, we ensure that non-numeric values were transformed into numeric.

3.4 Feature Engineering

To provide the model with valuable information such as historical patterns and cumulative behavior that
improve its ability to predict machine failures, we added some features to the dataset. We extracted several
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time-related features from the raw timestamp data such as hour of the day, day of the week and month to
identify temporal patterns. Lag features of experienced downtime were also introduced to enable the model to
learn from the machine's recent downtime history which is often a good indicator of future failures. In
addition to lag features, the rolling mean and sum of downtime were computed over multiple time windows
(7, 14, and 30 days) to capture short-term trends. To reflect the long-term operational history of the machine,
the total downtime is also calculated to provide a broader view of the machine's performance. In the final step
of feature engineering, we created a binary target variable (WFS) that indicates whether a machine is likely to
experience significant downtime in the near future. These features derived from existing time and downtime
values, help the ML model capture both short-term and long-term patterns in failure behavior.

3.5 Model Training

We separately trained a binary classification model using SVM, LR, DNN and CatBoost algorithms.
Using the train-test-split function from the scikit-learn library, the dataset was split into training and testing
sets using an 80-20 proportion: 80% of the data used for training and 20% reserved for testing. In order to
avoid overfitting during training process, we used techniques like hyperparameter tuning and early stopping.
To ensure robust performance across different data splits, we employed stratified K-fold cross-validation
with CatBoost. We also used a feature scaling class, StandardScaler from the scikit-learn library, to
normalize the input features.

3.6 Model Evaluation
We used common standard metrics to assess the efficiency of our algorithms. The formulas for measuring
accuracy, precision, recall and F1 score are as follows as mentioned in [7]:

4 B tp +tn ©
ceuracy = tn+tp+ fp+fn

t

Precision = P (10)

tp+fp
t
Recall = — (11)

tp+ fn

F1s 5 Precision * Recall (12)
= E3
core Precision + Recall

Where true positives (tp) is the number of instances where the model correctly predicted the positive
class. True negatives (tn) represents the number of instances where the model correctly predicted the negative
class. False positives (fp) illustrates the number of instances where the model incorrectly predicted the
positive class (also known as Type | error) and the number of instances where the model incorrectly
predicted the negative class (also known as Type Il error) is called false negatives (fp) [4]. We also used
another usual performance metric named AUC (Area Under the Curve) to evaluate the quality of our binary
classification models. Specifically, it measures the area under the ROC (Receiver Operating Characteristic)
curve, which plots the True Positive Rate (TPR) against the False Positive Rate (FPR) at various threshold
settings. It is a graphical representation that illustrates the diagnostic ability of the classifier as a discriminant
threshold is varied [5].

4. RESULTS

In a real application of the proposed approach, we addressed the problem in the three specified scenarios
using an Intel Core i5-5200U CPU, 8 GB RAM, Intel HD Graphics 5500 GPU, window 10 as the operating
system.

Table 3 shows the performance of our ML models based on standard performance metrics. In addition,
the highest values for each metric were highlighted among all algorithms. The DNN model achieves the best
results across most evaluation metrics including Accuracy, Recall, F1-score, and AUC, while ranking second
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in Precision. Therefore, based on these findings, the DNN model is the most effective strategy in terms of
performance metrics and superior to all three other algorithms.

Table 3. Model evaluation

Standard performance metrics

https://cem.cdsts.ir

ML methods Accuracy Precision Recall F1 score AUC

SVM 0.9484 0.9343 0.9275 0.9309 0.9442
LR 0.9490 0.9706 0.8919 0.9296 0.9965
DNN 0.9796 0.9730 0.9730 0.9730 0.9969
CatBoost 0.9000 0.9924 0.7318 0.8424 0.9959

The AUC train and test in DNN model are presented in the Figure 3 for 50 number of epochs. AUC
ranges in value from 0 to 1 [7]. Train AUC is represented in baby blue color while the test AUC is shown in
red color. As seen, both curves increase rapidly in the initial epochs, indicating the model is learning well,
and they plateau around an AUC score of 0.99, which highlights excellent performance.

Train vs Test AUC

107 —— Train AUC e — e —
Test AUC o
‘,

e

0.9

o8

AUC

o6

- T T T
0 10 0 0 a0 0
Epoch

Figure. 3. Training vs Test AUC

4.1 Dynamic linear programming (DLP) illustrative example

Let us optimize production decisions for the 7 product groups mentioned in section 2 over a 12-month
planning horizon. The objective is to minimize total costs, including in-house production, outsourcing,
backorders, and capacity extensions, while meeting monthly demand. Three scenarios (S1, S2 and S3) are
considered that differ in machine failure calculations. The first scenario is the one presented in the original
problem. In the second scenario, we assumed that machine failure values are 50 percent higher than the
estimated values. And in the third one, the problem is solved without machine failures, assuming that no
machine capacity is lost due to breakdowns.

Table 4 gives a summary of the costs. We used the latest real production costs and procurement prices for
in-house and outsourcing costs for each product group. To reflect the actual cost of production for backorders
without adding unnecessary complexity, we assumed backorder cost as the average of in-house and
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outsourcing costs, which indicates a penalty cost for delaying fulfillment of the demand. Our rough
calculations for equipment and infrastructure needed for capacity expansion have led us to the costs of
capacity extension per unit of each product group in the last column of the table. Distribution of demand for
each product group for 12 months planning period is presented in table 5.

Table 4. Production cost

PID Product group In-house cost per Outsourcing cost Backorder cost per Capacity extension
unit ($) per unit ($) unit ($) cost per unit ($)
1 Sheet Freezer Bag 2.25 243 2.34 62.5
2 Freezer Bag Roll 1.4 1.54 1.47 70
3 Dispenser Box 2.3 2.65 2.475 65
Freezer Bag
4 Garbage Bag Roll 0.75 0.795 0.7725 50
5 Easy Tie Garbage 1.18 1.28 1.23 55
Bag
6 Plastic Disposable 1.86 3.55 2.705 75
Tablecloth
7 Disposable Glove 2.2 2.45 2.325 55

The nominal in-house production capacity, as well as the outsourcing production capacity, for each
product group are presented in Table 6. As can be seen, the nominal production capacity is assumed to be
constant across all months. However, the remaining in-house production capacity, 7., is calculated by
deducting the predicted downtimes obtained from ML models from the nominal capacity.

Table 5. Demand quantities (per carton)

Months

PID 1 2 3 4 5 6 7 8 9 10 11 12

1 4,610 5,809 6,008 5,916 6,962 7,133 6,205 5,926 6,315 7,239 7,667 8,530
2 3,601 5,450 4,746 4,176 4,663 4,507 5,023 4,704 5,147 6,460 6,678 5,621
3 2,512 4,146 4,533 7,251 4,334 4,392 5,888 3,685 4,785 7,193 6,803 7,358
4 7,304 10,195 10,137 9,845 10,497 10,780 11,707 10,460 11,059 12,160 13,370 13,570
5 3,611 5,570 6,049 5,207 5,472 5,372 5,187 4,628 4,549 5,674 4,984 5,507
6 6,755 8,300 7,175 7,936 7,701 8,359 7,555 7,020 7,288 8,907 9,592 10,215
7 658 1,507 1,640 1,462 1,700 1,369 1,591 1,338 2,028 1,963 2,402 1,734

The optimal master production plan for each product over a 12-month future planning horizon for all
scenarios utilizing the DNN algorithm is presented in Table 7 to 13. The tables show the amount of in-house
production, outsourcing, any necessary capacity extensions, the backordered quantities in carton, and the
associated total costs. These results were obtained using a DLP model programmed in Python utilizing the
SciPy linprog solver with the Highs method. As seen in the tables, the DLP process dynamically balances
production allocation decisions across months for different product groups to minimize overall cost,
considering fulfillment of demand and available or future production capacity in the proposed scenarios.

Figure 4 provides a detailed view of the decision variables (summation of product groups) as well as the
optimal production planning strategy during a 12-month planning horizon for three scenarios (S1, S2, and
S3). We see stable in-house production levels that have a gradually increasing trend across the planning
horizon. Notably, in the last months, values of S2 are slightly lower than S1 and S3. This suggests that in this
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particular scenario, resources may have been reallocated to other strategies such as outsourcing or capacity
expansion because of capacity loss from machine failures. This trend supports the key role of in-house
production as the main base to meet demands with only minor adjustments.

Table 6. In-house and outsourcing capacity (per carton)

ID In-house Outsourcing
1 4,480 1,250

2 4,200 500

3 6,000 300

4 8,800 750

5 4,800 200

6 7,800 250

7 960 300

Table 7. Optimal production plan and total costs for sheet freezer bag in all scenarios

Month In-house Production Outsource Production Capacity Extension Backorder Total Cost ($)

(S1-S2-S3) (S1-S2-S3) (S1-S2-S3) (S1-S2-S3) (S1-S2-S3)
1 4467,4454,4480 143,156,130 0,0,0 0,0,0 10398.24,10400.58, 10395.9
2 4480,4480,4480 1250,1250,1250 0,0,0 79,79,79 13302.36, 13302.36,13302.36
3 4443,4406,4480 1250,1250,1250 0,0,0 394,431,357 13956.21,13959.54,13952.88
4 4476,4472,4480 1250,1250,1250 584,625,543 0,0,0 49608,52162.5,47055
5 5017,5012,5023 1250,1250,1250 0,0,0 695,700,689 15952.05,15952.5,15951.51
6 5033,5042,5023 1250,1250,1250 0,0,0 1545,1541,1549 17977.05,17987.94,17963.91
7 5021,5019,5023 1250,1250,1250 1479,1477,1481 0,0,0 106772.25,106642.8,106901.8
8 5926,54Y7 5926 0,0,0 0,0,0 0,0,0 13333.5,1333.5,1333.5
9 6315,6315,6315 0,0,0 0,0,0 0,0,0 14208.75,14208.75,14208.75
10 6540,6577,6504 699,662,735 0,0,0 0,0,0 16413.57,16406.91,16420.05
11 6527,6550,6504 1140,1117,1163 0,0,0 0,0,0 17455.95,17451.81,17460.09
12 6533,6563,6504 1250,1250,1250 0,0,0 747,717,776 19484.73,19482.03,19487.34
Total 64778,64816,64742 10732,10685,10778 2063,2102,2024 3460,3468,3450 308863.16,311290.67,306433.04
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Table 8. Optimal production plan and total costs for freezer bag roll in all scenarios

Month In-house Production Outsource Production Capacity Extension Backorder Total Cost ($)

(S1-52-S3) (S1-52-S3) (S1-52-S3) (S1-52-S3) (S1-52-S3)
1 3601,3601,3601 0,0,0 0,0,0 0,0,0 5041.4,5041.4,5041.4
2 4178,4156,4200 500,500,500 0,0,0 772,794,750 7754.04,7755.58,7752.5
3 4196,4193,4200 500,500,500 0,0,0 822,847,796 7852.74,7885.29,7820.12
4 4200,4200,4200 500,500,500 298,323,272 0,0,0 27510,29260,25690
5 4430,4388,4472 233,275,191 0,0,0 0,0,0 6560.82,6566.7,6554.94
6 4479,4485,4472 28,22,35 0,0,0 0,0,0 6313.72,6312.88,6314.7
7 4491,4510,4472 500,500,500 0,0,0 0,13,51 7104.44,7103.11,7105.77
8 4486,4499,4472 250,218,283 0,0,0 0,0,0 6665.4,6634.32,6696.62
9 4475,4477 4472 500,500,500 0,0,0 172,170,175 7287.84,7287.7,7288.05
10 4452,4430,4472 500,500,500 1680,1700,1663 0,0,0 124602.8,125972,123440.8
11 6165,6196,6135 500,482,500 0,0,0 13,0,43 9420.11,9416.68,9422.21
12 5634,5621,5664 0,0,0 0,0,0 0,0,0 7887.6,7869.4,7929.6
Total 54787,54756,54832 4011,3997,4009 1978,2023,1935 1811,1824,1815 224000.91,227105.06,221056.71

Table 9. Optimal production plan and total costs for dispenser box freezer bag in all scenarios

Month In-house Production Outsource Production Capacity Extension Backorder Total Cost ($)
(S1-S2-S3) (S1-S2-S3) (S1-S2-S3) (S1-S2-S3) (S1-S2-S3)
1 2512,2512,2512 0,0,0 0,0,0 0,0,0 5777.6,5777.6,5777.6
2 4146,4146,4146 0,0,0 0,0,0 0,0,0 9535.8,9535.8,9535.8
3 4533,4533,4533 0,0,0 0,0,0 0,0,0 10425.9,10425.9,10425.9
4 5966,5932,6000 300,300,300 0,0,0 985,1019,951 16954.675,16960.63,16948.73
5 5319,5353,5285 0,0,0 0,0,0 0,0,0 12233.7,12311.9,12155.5
6 4392,4392,4392 0,0,0 0,0,0 0,0,0 10101.6,10101.6,10101.6
7 5888,5888,5888 0,0,0 0,0,0 0,0,0 13542.4,13542.4,13542.4
8 3685,3685,3685 0,0,0 0,0,0 0,0,0 8475.5,8475.5,8475.5
9 4785,4785,4785 0,0,0 0,0,0 0,0,0 11005.5,11005.5,11005.5
10 5954,5908,6000 300,300,300 0,0,0 939,985,893 16813.225,16821.28,16805.18
11 5977,5955,6000 300,300,300 1465,1533,1396 0,0,0 109767.1,114136.5,105335
12 7358,7358,7358 0,0,0 0,0,0 0,0,0 16923.4,16923.4,106923.4
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Total 60515,60447,60584 900,900,900 1465,1533,1396 1924,2004,1844 241556.4,246018,237032.1

Table 10. Optimal production plan and total costs for garbage bag roll in all scenarios

Month In-house Production Outsource Capacity Extension Backorder Total Cost ($)

(S1-52-S3) Production (S1-52-S3) (S1-52-S3) (S1-52-S3)

(S1-S2-S3)

1 7304,7304,7304 0,0,0 0,0,0 0,0,0 5478,5478,5478
2 8783,8767,8800 750,750,750 0,0,0 662,678,645 7694.895,7695.255,7694.513
3 8800,8800,8800 750,750,750 0,0,0 1249,1265,1232 8161.1025,8173.463,8147.97
4 8800,8800,8800 750,750,750 1544,1560,1527 0,0,0 84396.25,85196.25,83546.25
5 10344,10360,10327 153,137,170 0,0,0 0,0,0 7879.635,7878.915,7880.4
6 10269,10210,10327 511,570,453 0,0,0 0,0,0 8107.995,8110.65, 8105.385
7 10327,10327,10327 750,750,750 0,0,0 630,630,630 8828.175,8828.175,8828.175
8 10327,10327,10327 750,750,750 0,0,0 13,1313 8351.543,8351.543,8351.543
9 10311,10293,10327 750,750,745 11,29,0 0,0,0 8879.5,9766,8337.525
10 10355,10389,10327 750,750,750 0,0,1083 1055,1021,0 9177.4875,9176.723,62491.5
11 10288,10256,11410 750,750,750 0,0,0 3387,3385,1210 10928.7075,10903.16,10088.48
12 10330,10339,11410 750,750,750 5877,5866,0 0,0,2620 302193.75,301650.5,11177.7
Total 116238,116172,118486  7414,7457,7368 7432,7455,2610 6996,6992,6350 3164599.04,471208.635,230127.43

Table 11. Optimal production plan and total costs for easy tie garbage bag in all scenarios

Month In-house Production Outsource Capacity Extension Backorder Total Cost ($)

(S1-S2-S3) Production (S1-S2-S3) (S1-S2-S3) (S1-S2-S3)

(S1-S2-S3)

1 3611,3611,3611 0,0,0 0,0,0 0,0,0 4260.98,4260.98,4260.98
2 4794,4788,4800 200,200,200 0,0,0 576,582,570 6621.4,6621.7,6621.1
3 4800,4800,4800 200,200,200 0,0,0 1625,1631,1619 7918.75,7926.13,7911.37
4 4800,4800,4800 200,200,200 1832,1838,1826 0,0,0 106680,107010,106350
5 5472,5472,5472 0,0,0 0,0,0 0,0,0 6456.96,6456.96,6456.96
6 5372,5372,5372 0,0,0 0,0,0 0,0,0 6338.96,6338.96,6338.96
7 5187,5187,5187 0,0,0 0,0,0 0,0,0 6120.66,6120.66,6120.66
8 4628,4628,4628 0,0,0 0,0,0 0,0,0 5461.04,5461.04,5461.04
9 4549,4549,4549 0,0,0 0,0,0 0,0,0 5367.82,5367.82,5367.82
10 5674,5674,5674 0,0,0 0,0,0 0,0,0 6695.32,6695.32,6695.32
11 4984,4984,4984 0,0,0 0,0,0 0,0,0 5881.12,5881.12,5881.12
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12 5507,5507,5507 0,0,0 0,0,0 0,0,0 6498.26,6498.26,6498.26

Total 59378,59372,59384 600,600,600 1832,1838,1826 2201,2213,2189 174301.27,174638.95,173963.59

Table 12. Optimal production plan and total costs for plastic disposable tablecloth in all scenarios

Month In-house Production Outsource Capacity Extension Backorder Total Cost ($)

(S1-52-S3) Production (S1-52-S3) (S1-52-S3) (S1-52-S3)

(S1-S2-S3)

1 6755,6755,6755 0,0,0 0,0,0 0,0,0 12564.3,12564.3,12564.3
2 7773,7746,7800 250,250,250 0,0,0 277,304,250 16094.565,16117.38,16071.75
3 7452,7479,7425 0,0,0 0,0,0 0,0,0 13860.72,13910.94,13810.5
4 7800,7800,7800 136,136,136 0,0,0 0,0,0 14990.8,14990.8,14990.8
5 7701,7701,7701 0,0,0 0,0,0 0,0,0 14323.86,14323.86,14323.86
6 7741,7682,7800 250,250,250 0,0,0 368,427,309 16281.2,16331.06,16231.345
7 7743,7685,7800 180,250,64 0,47,0 0,0,0 15040.98,18706.6,14735.2
8 7020,7020,7020 0,0,0 0,0,0 0,0,0 13057.2,13057.2,13057.2
9 7288,7288,7288 0,0,0 0,0,0 0,0,0 13555.68,13555.68,13555.68
10 7800,7847,7800 250,250,250 857,810,857 0,0,0 79670.5,17673.97,79670.5
11 8640,7813,8657 250,250,250 0,0,0 702,2339,685 18856.81,21746.68,18842.445
12 8635,7803,8657 250,250,250 0,4501,0 2032,0,1993 22445.16,352976.1,22380.585
Total 92348,90619,92503 1566,1636,1450 857,4548,857 3379,3880,3237 250741.775,525954.54,250234.17

Table 13. Optimal production plan and total costs for disposable glove in all scenarios

Month In-house Production Outsource Capacity Extension Backorder Total Cost ($)

(S1-S2-S3) Production (S1-S2-S3) (S1-S2-S3) (S1-S2-S3)

(S1-S2-S3)

1 658,658,658 0,0,0 0,0,0 0,0,0 1447.6,1447.6,1447.6
2 949,938,960 300,300,300 0,0,0 258,269,247 3422.65,3424.025,3421.275
3 932,904,960 300,300,300 0,0,0 666,705,627 4333.85,4362.925,4304.775
4 960,960,960 300,300,300 868,907,829 0,0,0 50587,52732,48442
5 1700,1700,1700 0,0,0 0,0,0 0,0,0 3740,3740,3740
6 1369,1369,1369 0,0,0 0,0,0 0,0,0 3011.8,3011.8,3011.8
7 1591,1591,1591 0,0,0 0,0,0 0,0,0 3500.2,3500.2,3500.2
8 1338,1338,1338 0,0,0 0,0,0 0,0,0 2943.6,2943.6,29436
9 1804,1820,1789 224,208,239 0,0,0 0,0,0 4517.6,4513.6,4521.35
10 1813,1838,1789 150,125,174 0,0,0 0,0,0 4356.1,4349.85,4362.1
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11 1821,1852,1789 300,300,300 0,0,0 281,250,313 5394.525,5390.65,5398.525
12 1828,1867,1789 187,117,258 0,0,0 0,0,0 4479.75,4394.05,4567.9
Total 16763,16835,16692 1761,1650,1871 868,907,829 1205,1224,1187 91734.675,93810.3,89661.125

There are large variations over months as seen in outsource production subplot. Peaks in different months
signify more reliance on outsourcing to meet demand because full utilization of in-house capacity was
occurred. Earlier capacity extensions lead to significant drop in outsource values in months 5 and 8 for all
scenarios. These variations in levels of outsourcing suggest that outsourcing can be viewed as a flexible
mechanism to cope with spikes in demand when in-house capacity is insufficient.

Periods where demand exceeds available supply are shown in the third subplot that result in backorders.
For instance, backorders reach the highest level in month 3 in all scenarios possibly due to a rise in demand
or capacity constraints. Another peak in month 11 especially high for S2 means that postponing the orders is
more cost- effective.

The capacity extension trends shown in the fourth subplot are other examples of addressing demand
variations. As discussed earlier, investment to increase the manufacturing capacity is seen in month 4 which
is clearly reflected in the same pattern of the total cost in Figure 6. A further peak is observable in the 12th
month of the S2 applying capacity extension at the end of the planning horizon.

The stacked area charts in Figure 5 represent the cumulative contributions of in-house production,
outsource production, capacity extension, and backorders across a 12-month period for our scenarios. In S1,
in-house production in blue color remains high with steady increase throughout the year. Outsource
production which is colored orange plays a secondary role with an increasing trend toward the end of the
year, indicating some reliance on external resources when internal capacity is unable to satisfy the demand.
Capacity extension depicted in green shows minimal fluctuations. This means that internal production
capacity in S1 is almost adequate. The backorders indicated in red maintained stable meaning that overall
demand is adequately and consistently fulfilled.

While internal production dominates the S2, a small growth of outsource production can be observed in
contrast to the S1. This scenario depends more on external production to meet demand. Interestingly, the
importance of capacity extension increases here. The capacity is extended where needed. Backorders remain
low through S2 similar to S1 although they rise again later in the year.

In S3, in-house production continues to dominate, but the pattern is different. Outsource production plays
a much smaller role compared to the other scenarios because of fully usage of internal capacity. This means
that S3 relies heavily on internal resources rather than external sourcing. Capacity extension is moved
forward and values are higher during the last months in comparison with the previous two scenarios. Here,
backorders are the least in all the three strategies indicating little unfulfilled demand.

In general, our scenarios show distinct approaches to the management of production. S1 implements a
balanced strategy in terms of internal production activities and external resource dependency. S2 shifts
toward greater external resources, with a moderate role for capacity extension. S3 is the one with the greatest
focus on internal production which leads to substantial in-house production, occasional capacity adjustments
and thus lower backorders. Such distinctions can be considered as different management approaches
employed by the firms; S3 relies on own capacity, S2 opts for external sources, while S1 employs stable
moderate strategies.

Finally, the total monthly and cumulative costs associated with each scenario are depicted in Figure 6. In
the top subplot, we see a significant cost increase in month 4 that exactly corresponds to the capacity
extension peak shown in Figure 4. This suggests the financial impact of capacity expansion in all scenarios.
As can be seen, in the seventh month, the total costs are exactly proportional to the amount of capacity
extension in Figure 4. Another increase is also evident in month 12, especially for scenario S2, implies that
the model attempts to meet end-of-year demands. In the bottom subplot, S2 accumulates the highest total cost
by the end of the period, showing a consistent increase throughout due to the high share of cumulative
capacity extensions. S1 also rises steadily, but with some fluctuations, reaching a cumulative cost higher than
that of third scenario. S3 despite its occasional spikes especially in the last month, accumulates the least total
cost by the end of the period. This suggests that S3 maintains lower cumulative costs compared to the other
two scenarios, because it relies heavily on inexpensive internal production.

https://cem.cdsts.ir Page 20



50 g 2§ 5 3 513 e | et o0

5. DISCUSSION

In contrast to existing literature that often uses environmental variables of machines and components or
well-known datasets, we utilize event-based historical data of machine failures with a two-level classification
(system and component) to predict future failures. Furthermore, unlike previous studies that have focused on
integrating failure data with production planning primarily at the scheduling and planning levels, our research
models this integration at the broader master production level within a real multi-machine system across
several product groups. The main analytical outcomes of this research are as follows:
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Figure. 4. Scenario-based analysis of decision variables

5.1 Enhancing Maintenance Decision-Making

This research enhances maintenance decision-making by providing insights not only into when and for
how long failures are likely to occur, but also which specific machines and components are at risk, and the
potential causes of these failures. This enables the maintenance team to plan daily tasks effectively, allocate
resources more efficiently and mitigate the risk of downtime. As shown in Figure 7, failure prediction results
of the DNN algorithm indicate that the largest share of machine downtimes is due to mechanical failures,

followed by electrical failures, with pneumatic failures accounting for a negligible proportion. Knowledge of
the key factors of system-wide failures helps the maintenance manager in prioritizing training activities and
recruitment needs. The comparison of the predicted percentage of failure for different components
throughout the planning horizon is also shown in Figure 8. More than 60% of machine failures are due to five
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main causes including machine settings, cutting blades, perforating blades, ovens, and plastic rollers failures.
This analysis ensures the team that all the necessary spare parts are available.
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Figure. 6. Monthly cost trend and cumulative cost over months

These are two examples of analyses designed for the maintenance manager. Certainly, by analyzing the
predicted failure results in more detail, such as examining a specific machine at a specified time, the
maintenance team can make better use of this data. As a result, with early awareness of failure timing and
causes, the gap between machine downtime due to failure and the machine repair or maintenance time can be
reduced that leads to enhanced operational efficiency and reduced maintenance-related costs.

5.2 Selecting Master Production Strategies

In contrast to traditional MPP methods that rely on static assumptions regarding production capacity, our
model adjusts production plans based on anticipated machine failures and thus dynamic changes in
production capacity. For instance, if a failure is predicted, our model suggests adjustments in production
quantities or proposes backordering. Additionally, when internal capacity is projected to be insufficient, the
model recommends outsourcing strategies or capacity extensions to meet demand in advance. We presented
three scenarios to provide managerial insight into the management of backorders, capacity extensions and
outsourcing strategies. This research highlights distinct strategies available to production planning managers
for addressing demand and capacity fluctuations. S3 with zero machine failures, suggests maximum in-house
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production as shown in Figure 9, because it focuses on self-reliance and minimizes backorders and external
dependencies. This approach is ideal for factories where internal capacity is abundant and reliable. Lower
production costs and more control over production processes are seen in this case. In contrast, S2, with
considerable capacity loss due to failures, shows greater reliance on capacity extension and results in more
backorders. Although this strategy offers more flexibility in satisfying demand, it comes at a higher cost. S1
represents a balanced approach, relying primarily on in-house production with limited external production.
This strategy enables managers to run production lines steadily with occasional outsourcing in case of
shortages in capacity. Surprisingly, as shown in Figure 9, in terms of unmet demand throughout planning
horizon, S2 is the most successful in minimizing it. These unmet demands correspond to the 12th month of
the scenarios, where S2 has achieved the lowest backorder as seen in Figure 4, or in fact, the lowest unmet
demand. Our model provides valuable insights for production planning managers in choosing their
production strategy, particularly in industrial environments where machine reliability is uncertain.
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Figure. 7. System-wide failure throughout planning horizon

5.3 Optimizing Cost of production

The analysis of the three scenarios (S1, S2, and S3) reveals the impact of machine failures on the
correlation of various production costs with the total cost. The first scenario as shown in the first subplot of
Figure 10 depicts the baseline condition presents a relatively moderate relationship between in-house
production cost (0.36), outsourcing cost (0.30), capacity extension cost (0.89) and backorder cost (0.46) and
total cost. In this scenario, machine failures are rather moderate regarding to the overall impact on production
costs, but capacity extension becomes the key issue.

In S2 where machine failures are increased by 50%, the correlations of in-house production costs (0.67),
capacity extension costs (0.95), and backorder costs (0.80) rise significantly. This is due to the fact that
machine failures have a larger effect on the total production cost. The value reduces slightly reaching to 0.19
in the right subplot of the heatmap which shows that outsourcing loses its precedence under higher machine
failure conditions. The importance of capacity extension and backorder costs is high in S2 and they are the
dominant contributors to total costs. On the other hand, the role of outsourcing costs is insignificant.

In S3 with no machine failure, in house production cost has a strong significant positive relation with total
cost. The value of 083 suggests that the in-house production cost plays a more pronounced role. The
correlations for capacity extension and backorder costs decreased to 0.6 and 0.73. The need for capacity
extension and backordering is reduced because there are no machine failures. Outsourcing costs (0.61)
increase in relevance. This indicates that in an uninterrupted production system, there is a tendency to
outsource in capacity shortages.
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Figure. 9. Sum of optimized production variables in the Scenarios

In our proposed framework, the overall total cost has a substantial dependency on reliability of machines.
Machine failures have a strong influence on cost structure, increasing the relevance of capacity extension and
backorder costs. Removing these failures stabilizes the cost drivers, making in-house production and
outsourcing more significant. Our model helps management identify cost drivers and plan for strategic
decisions considering from a cost perspective.
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Figure. 10. Heatmap of correlation between various production costs and the total cost

5.4 Evaluating different lead times

Understanding the relationship between lead times and key variables equips managers with actionable
insights to enhance supply chain efficiency and adapt to dynamic market conditions. Therefore, we examine
its impact on our key decision variables. As shown in Figure 11, the impact of lead time on in-house
production reveals stable trends in all scenarios with slight variations. Therefore, the stability of in-house
production across scenarios highlights its role as a foundational strategy for meeting demand. But, the impact
of lead time on outsource production, capacity extension, backorder, and unmet demand indicates distinct
trends that vary across scenarios. In all scenarios as seen in Figure 12, outsource production decreases
steadily as lead time increases. This means that having longer lead times allows internal resources to play a
significant role and reduce the reliance on outsourcing. Capacity extension displays a scenario-specific
pattern. In S1, it increases sharply at LT=4, suggests reaction to satisfy demand, whereas in S2 it peaks at
LT=2 before declining. In S3, capacity extension rises progressively.

However, backorders and unmet demand trends are the most important in Figure 12 Both backorder and
unmet demand grow consistently with lead times in all scenarios. There is a sharp rise at LT=4 except for
unmet demand in the second scenario. Managing demand gets challenging by increasing lead time. Managers
could explore several strategies to lessen this challenge. Persuading the customers to accept delivery of
orders after certain specified dates would help to reduce the pressure on the supply chain. This transparent
communication with customers for delays may also enhance their level of trust and ability to accept longer
lead times. Additionally, backorders can be mitigated by investing in agile production or improving demand
forecast.
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and unmet demand trends across different lead times

6. CONCLUSION AND FUTURE RESEARCH

This paper tackles the problem of integrating MPP and failure prediction in a real-world multi-machine
packaging system. The main focus of the study is the development of an innovative framework to predict the
machine failures in the next planning horizons and optimize production planning. To achieve this, we
introduced a binary target variable called WFS to forecast downtime in future planning horizons. Using this
variable, we built ML models to forecast the machines’ probable failures so that effective maintenance could
be planned in advance to improve the master production plans. Following an evaluation of 4 ML models’
effectiveness using standard performance metrics, the optimal model was selected. Our evaluation
demonstrated that while all the models performed effectively, the Deep Neural Network (DNN) model
consistently outperformed the others. Based on this model, we calculated the remaining capacity, which was
then utilized as an input for the subsequent phase. Then, a DLP optimization model was formulated to
determine the optimal production strategies. The output of the model represents the amount of optimal in-
house and outsourcing production, any necessary capacity extensions and the backordered quantities for each
product in every period of the overall planning horizon. Our findings suggest that the proposed integrated
ML-based predictive approach and the DLP optimization model can be a valuable resource for decision-
makers to choose their strategies.

Undoubtedly, the present paper was a case study with specific configurations. Future work could expand
the research applying this framework on a wider variety of manufacturing systems containing more diverse
machinery and complex production configurations. Moreover, another area for the development of ideas
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could be the utilization of more advanced machine learning models such as ensemble methods to improve the
accuracy of failure prediction. Furthermore, selection of the ML method by cost-oriented analysis is a new
direction in the existing framework. It would be helpful for decision makers to analyze different cost factors
such as the cost of maintenance against the cost of production in details. Finally, additional variables such as
production limitations or maintenance schedules could be incorporated into the current framework to
improve the robustness of the developed predictive model.

However, we plan to expand the model to include elements of the broader supply chain. Considering

factors like inventory management, supplier reliability and logistics would allow production planning to be
fully synchronized with these external factors. If production planning were synchronized with external
factors, a more comprehensive and adaptive system could be achieved.
This research focused on another example of an integrated failure prediction and production planning
framework. We believe that if the scope of other supply chain factors expanded, this study would contribute
to the development of mechanisms for supply chain systems to possess self-optimization for uncertain and
complex conditions in the industrial settings.
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