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ABSTRACT 

This paper deals with the problem of integrated predictive maintenance (PdM) and master production 

planning (MPP) in a real multi-machine packaging system. In contrast to prior work in which environmental 

variables of machines and components or popular datasets were used, we employed event-based historical 

data of machine failures. Four machine learning (ML) models for failure prediction were built with the Deep 

Neural Network (DNN) outperforms the other. We proposed a dynamic linear programming (DLP) model to 

determine optimal production strategies while minimizing costs. While previous studies concentrate mainly 

on scheduling and planning, our research concentrates on the higher master production level. The 

framework was tested using real-world data from a one-year data collection, and analyses of three scenarios 

revealed different trade-offs between production strategies. This study provides practical evaluation in the 

area of maintenance for professionals using failure prediction analysis. Moreover, the approach proposed in 

this framework can help planners to decide which strategy they would like to implement based on the key 

production and cost-related parameters specific to their business. In conclusion, this paper as a strong 

methodology provides managerial insights for decision-makers and highlights future directions to advance 

the adaptability of manufacturing processes in the Industry 4.0 environment. 

 

Keywords: Master production planning, Predictive maintenance, Machine learning, Failure prediction, 

Deep neural networks, Optimization  

 

 

1. INTRODUCTION 

 

In today's Fourth Industrial Revolution context, integration of impact factors that affect productivity and 

cost of the supply chain is crucial. Machine failure and production planning as the basic components have 

been developed in various technological models and research fields. When an unplanned downtime, caused 

by a production line failure occurs, it often trims down the system‟s productivity and renders the current 

production plan obsolete. Therefore, Maintenance planning should be an integral part of the overall business 

strategy and should be coordinated and scheduled with manufacturing activities [1]. This results in fostering 

operational efficiency, assets durability, downtime minimization and finally overall productivity. It leaves no 

doubt that both these two activities are correlated and both are holding an important position in increasing the 

profit margin and the effectiveness of the company. It is worth mentioning that because they use same 

resources, there are also in conflict with each other, but the synchronization between the production planning 

and preventive maintenance (PM) activities may avoid failure, production delays and replanning problems 

[2]. 

In the literature, there are four main maintenance strategies; Reactive Maintenance (RM), Scheduled 

Maintenance (SM), Condition-Based Maintenance (CBM) and Predictive Maintenance (PdM). RM occurs 

when a machine component is failed and can no longer operate. This strategy is risky from the point of view 

of safety measures and higher costs to restore the catastrophic failures, and a higher amount of time to be 

repaired [3]. SM is a strategy where maintenance is carried out at pre-decided time intervals. It comprises 
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inspections, adjustments, and planned shutdowns. The SM strategy‟s primary goals are to reduce the cost of 

reactive maintenance and machine failures. The repair cost, however, is generally less in SM compared to 

RM. Condition-based maintenance involves continuously monitoring and replacing an asset when it stops 

functioning normally [3]. In this research, we integrated master production planning (MPP) with failure 

prediction, specifically predictive maintenance (PdM). Using historical event-based machine failure data 

enabled us to predict when failures will occur and when maintenance is needed. This strategy supports lean 

manufacturing [4]. By analyzing historical failure data, this strategy predicts maintenance requirements, 

reduces maintenance expenses and therefore improves overall operational efficiency and durability of 

machines through correct utilization of resources. This gives the production scheduling experts information 

on the maintenance schedules thereby allowing plans to be put in practice on the machines at appropriate 

times. This reduces occurrence of interruptions to the production process, the likelihood of unexpected 

downtimes in future, and enables better control on capacity losses. Moreover, this approach is helpful in 

making more accurate and realistic decisions. Overall, MPP integrated with machine failures would increase 

production line efficiency, optimize resource consumptions, and lead to high customer satisfaction. 

 

 

1.1 Industry application  

Research on failure prediction and production integration has highlighted applications in industries such 

as aircraft, data center, oil & gas, automotive and manufacturing industries. Dangut et al. [5] suggested a 

Machine Learning (ML) approach to predict extremely rare aircraft component failure. A roadmap for 

maintenance planning extracted from sensor measurements using Remaining Useful Life (RUL) prognostics 

was proposed by Lee & Mitici [6] to limit the wasted life of aircraft turbofan engines. Gour & Waoo [7] 

introduced tree-based algorithms for classifying and forecasting the likelihood of hard drive failures in the 

data center. Surveys such as that conducted by Arena et al. [8] have analyzed the historical data on 

maintenance alerts of the components of a revamping topping plant belonging to an industrial group in oil & 

gas industry.  Zhai et al. [9] assessed the applicability of their operation-specific health prognostics approach 

in a real industrial use case, a proprietary dataset of multifunctional machining centers for automotive 

component manufacturing. Hulbert et al [10] presented a method to predict impending vehicle system faults 

by analyzing sensor data in the automotive industry for improving diagnostics and preventing errors. But, a 

large body of literature has investigated integrated predictive maintenance and production planning focused 

on the manufacturing sector to reduce costs and downtime. Seminal studies in this area were the works of 

Cassady & Kutanoglu [11], Sortrakul et al. [12], Aghezzaf et al. [13], Najid et al. [1] and Fitouhi & 

Nourelfath [2] that simultaneously determined production scheduling and preventive maintenance planning 

decisions for small size problems and attempted to show effectiveness of proposed integrated models. Vast 

majority of recent research into the integration of production and maintenance activities in the manufacturing 

sector such as Sobaszek et al. [14], Zonta et al. [15], Leukel et al [16], Sengottaiyan et al [17], Nasser & Al-

khazraji [18], Shoorkand et al [19], Tortora et al. [20], Pinciroli et al. [21] and Shoorkand et al [22] has 

focused on data-driven approach being solved by ML algorithms that can be categorized as new generation of 

studies. 

 

1.2 Model-based Approach 

A significant body of research on integrated models utilized model-based methodologies. Cassady & 

Kutanoglu [11] and Aghezzaf et al. [13] and Aghezzaf & Najid [23] developed a mathematical model for 

integrated production scheduling and PM planning problem. The problem of determining optimal integrated 

production plan and date of preventive maintenance in a multi items capacitated lot sizing problem with 

demand shortage was formulated by Najid et al. [1]. Similarly, Fitouhi & Nourelfath [2] proposed a model 

determines simultaneously the optimal production plan and the instants of non-cyclical preventive 

maintenance actions under demand fluctuation for a single machine. Alimian et al. [24] presented a robust 

integrated mathematical model for production and preventive maintenance planning in multi-state systems, 

considering uncertain demand and common cause failures. 

 

1.3 Machine Learning Approach 

     In recent years, there has been an increasing amount of literature on using ML techniques for predictive 

maintenance. It is a powerful tool for failure prediction [20]. ML algorithms enable the development of 

models from existing data to create models that can forecast new data outcomes. ML approaches, classified 

into unsupervised, semi-supervised, supervised, and reinforcement learning, have been applied in several 
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tasks related to maintenance, such as failure detection, failure diagnosis, condition monitoring, remaining 

useful life, and failure prediction [20]. In [8], three ML algorithms: Linear regression, ARIMA and Regressor 

Based on Polynomial Integration were applied to provide strategic support for the definition of an adequate 

maintenance plan through using simple natural language processing techniques and performing a clustering. 

Smart sensors data have been pre-processed in [24] to serve the evaluation of four regression ML models; 

Bayesian Linear Regression, Poisson Regression, Neural Network Regression, and Random Forest. In [26], 

an adaptive ARIMA ML model was proposed to support adaptive error prediction through a varying 

windowing technique. Therefore, future breakdown before its occurrence by forecasting the important 

signature parameters in the machinery can be predicted. Wang et al. [27] used a Bayesian algorithm for 

online RUL prediction of rotating machinery components in real time. The authors in [1], [19] and [28], 

collected real-world data for training and testing a Long Short-Term Memory algorithm to estimate the 

remaining useful life of the monitored equipment. The study in [20] used two ML methods, Random Forest 

(RF) and Decision Tree (DT), to predict the failure based on binary classification with a cost-oriented 

approach. 

 

1.4 Data source 

     Industry 4.0 is based on utilizing nine technologies, including simulation, industrial internet, vertical and 

horizontal system integration, cybersecurity, cloud computing, big data and analytics, augmented reality, 

advanced robotics, and additive manufacturing. Furthermore, IT systems, workpieces, machines, and sensors 

are all linked with a value chain that goes above a single company [4]. Such interlinked systems can allow for 

interaction and assess the data for predicting the operational performance levels of an enterprise [4]. For 

instance, a company can plan and do predictive maintenance at the most proper time using big data and ML 

techniques. In recent years, widespread use of data-driven approaches is seen for predicting machine 

breakdowns, identifying the main causes, and recommending the most effective actions to increase 

performance. These methods improve accuracy, and enhance decision-making leading to greater operational 

efficiency and cost savings. In the literature, this is done by considering possible environmental variables (for 

instance, torque, strength, temperature, vibration, pressure, lubrication levels, etc.) or utilizing well-known 

datasets including those that could trigger a failure. In reference [14], the historical failure times including the 

data on the history of maintenance and repair of technological machines were used. Condition-monitored 

data (temperature, vibration and pressure) for the plant‟s critical equipment components namely electric 

motor, gear and blower of a single-stage centrifugal compressor, were collected in [29]. Singh et al. [30] 

employed a failure dataset from the National Aeronautics and Space Agency (NASA) to forecast potential 

faults of rolling element bearings. Dangut et al. [5] used real log-based aircraft central maintenance system 

data, which is not often used for predictive maintenance modelling. The frameworks in [7], [9], [20], and [25] 

are validated on the well-known public dataset of Backblaze, the C-MAPSS FD002 dataset, the time-series 

dataset of Azure blob storage and Microsoft Azure ML platform respectively. A benchmarking subset data, 

FD001, developed by NASA was used in [19] and [22] that contains a training and testing set which consists 

of 26 columns, including the unit numbers (Id), cycle numbers, three operational parameters, and 21 data of 

various sensors. In [8], the data of historical maintenance alerts consist of “Notices” and “ODM” 

(maintenance orders) where the features of interest for analysis are the identification number of the notice, 

description, date of the event, technical office and the name of equipment. In [16], Operational data of 

fourteen components of the milling machine for about 25 months were available, and all observations were 

recorded with a frequency of 30 seconds. The time-series data in [18] comprised historical data on telemetry, 

machines, errors, and failures, representing various events from 100 different machines on an hourly basis 

over a one-year period. Lee & Mitici [6] used the degradation data of aircraft turbofan engines obtained by 

NASA, which consists of data subsets considering a specific number of fault modes and operating conditions. 

In reference [28], Sensor values that monitor different parameters of a production machine collected every 

five milliseconds were stored in a local database in the motion controller and then transferred to a PLC 

database and finally data values were stored in the historical database. Authors in [15] used Microsoft Azure 

AI-based PdM dataset providing telemetry readings taken every hour on voltage, rotation, pressure, and 

vibration sensors for several machines. Microsoft's real-world example is the source of the data utilized in 

[17] where machine characteristics and telemetric, such as power, temperature and rotational sensor readings, 

are also included in the collection for a total of 100 workstations through a whole year gathered hourly for 

every device. The subject of [31] is a DJI M600 multirotor Unmanned Aircraft System, which has 6 rotors 

with two blades each and it is controlled by a DJI N3 autopilot in a closed laboratory environment. Its main 

sensor contains an accelerometer, a gyroscope and a magnetometer and is able to capture data from all axis. 
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In the proposed system of [26], the value of oil contamination is measured using the sensor deployed in the 

hydraulic unit of a grey casting foundry on a molding line, once in every 3 minutes of interval through a 

wireless sensor network.  The oil contamination sensor measures the oil contamination level in mA, which is 

proportional to the oil contamination level of the NAS 1638 standard. The dataset in [21] contains records 

from sensors installed on different components of a wrapping machine, a blood refrigerator and a nitrogen 

generator. The dataset includes information from IoT sensors that measure various variables such as 

temperatures, motor frequencies, platform speeds, energy consumption and the nitrogen and CMS air 

pressure. 

 

1.5 Key Findings 

     Initial studies in integrated predictive maintenance and production planning literature emphasize the 

effectiveness of the proposed models such as the works of [1], [2], [11] and [13]. Most researchers have 

highlighted the effectiveness of their solution approach. In [12], the proposed genetic algorithm was 

introduced as an effective method to solve the integrated problem. Reference [21] demonstrates effectiveness 

of DL approaches in classifying data with diverse time-dependent patterns preceding a failure. The 

evaluation results show the effectiveness of the proposed hybrid CNN-LSTM model for PdM problem in 

[17], [18] and [22] due to its higher prediction accuracy. Key contributions in [9] and [15] are utilizing 

efficient deep learning approach to accurately predict machine failures, thereby enabling predictive 

maintenance planning. In [25], Random Forest outperformed other ML algorithms with an average R² of 0.96 

as the most exciting finding. Redundant and preventive stoppages in the production line were reduced in [28] 

at the same time, decreasing the cost of maintenance operations based on LSTM-autoencoders. As another 

distinctive contribution, a comprehensive decision support system was presented for a complex cyber-

physical production system in [32], which enables mapping the entire complexity of real-world production 

systems and supports production and maintenance planners in the multi-criteria decision-making process. 

Two novel studies, [5] and [8], employed natural language processing techniques to categorize faults and 

create structured data to enhance the prediction accuracy by ML applications. The proposed process in [20] 

differs from pre-existing ones due to a cost-oriented approach through which ML algorithm for failure 

prediction is chosen to minimize maintenance costs through a cost-based selection phase. In reference [31], a 

new method, called mean peak frequency, was proposed to estimate RUL using vibration data collected from 

a multi-rotor UAS to assess degradation. The main finding in [16] was understanding of how sliding window 

selection can effectively be used for ML-based failure prediction. The study in [29] found that the 

components with the shortest life expectancy require more frequent monitoring and maintenance, besides the 

fact that operating speed and functionality significantly affect the deterioration rates of all components. [14] 

focuses on utilizing historical data and effective prediction algorithms to forecast machine failures, 

integrating TBM principles with probabilistic approaches to enhance the reliability and efficiency of multi-

machine manufacturing systems. Development of a framework that achieves dynamic decision-making and 

cost minimization through the integration of deep learning with mathematical programming is considered to 

be the main success in reference [19]. The research in [7] differentiates itself by integrating ensemble 

learning with deep neural networks to improve the accuracy of failure predictions, especially in handling 

imbalanced data. New avenues are opened in [6], applying probabilistic RUL prognostics to optimize 

maintenance decisions through formulating the RUL estimation as a Markov decision process (MDP). 

 

      Motivated by the advantages of integrating failure prediction and production planning, the present study 

aims to develop a framework to determine the optimal master production decisions and the anticipated 

maintenance activities under certain demands in a real multi-machine manufacturing system of packaging 

household polymer products. There are several important areas where this study makes an original 

contribution. The importance of this study is that according to real event-based historical time-series failure 

data collected over the course of a year, categorized into machine specifications, failure information, time-

related data and the health condition of the production machines for PdM purposes has been predicted. 

Finally, the optimal production planning strategy is established for the entire planning horizon. This paper is 

organized into 6 sections. The remaining part of the paper proceeds as follows. Section 2 describes the 

problem, presents the integrated framework and overview of the used ML algorithms. Additionally, the 

dynamic mathematical modeling for the problem is presented. Section 3 illustrates using historical data to 

validate our ML algorithms. Section 4 discusses the results of a numerical example for the scenarios, where 

the proposed framework is employed to predict the failure, and the optimization model is implemented to 

determine optimal values of decision variables across the planning horizon. In section 5, we attempt to 
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present the main objectives of this research, which are applicable in industries, especially in the field of 

decision-making. The conclusions along with future research directions are summarized in Section 6. 

 

 

 

2. PROPOSED INTEGRATED FRAMEWORK  

     In this study, a plant produces a variety of plastic-based household and commercial products using a 

multi-machine packaging system. ML models predict machine failures in the planning horizon. And a linear 

programming model optimizes production while managing machine failures to minimize costs. In this 

integrated model, the aim is to predict failure, improve maintenance engineering, and balance in-house and 

outsourced production values considering probable delayed orders and capacity extensions. 

In contrast to popular ML algorithms that learn the health patterns of machines to predict the RUL 

according to collected data by sensors, we used historical event-based time-series failure data of machines to 

predict our binary target variable, will fail soon (WFS), in the next planning periods. The WFS threshold is 

set to 60 minutes, meaning the target variable is set to 1, indicating a failure soon, if downtime exceeds 60 

minutes. Otherwise, it is set to 0. Setting a threshold for the WFS highlights the focus of the proposed 

framework on preventing and managing the most disruptive and critical downtime events, which are most 

relevant to operational efficiency and resource management. Longer downtimes might point toward 

significant problems or critical failures in the machinery which need more time, technical priority and 

attention to solve, so predicting and avoiding them is more crucial than responding to every minor issue. 

Predicting WFS with high performance plays a critical role in reducing the overall downtime and optimizing 

maintenance schedules. To uncover hidden patterns, predict accurately, and make more efficient and timely 

maintenance decisions, we used ML techniques in line with the literature.  

     Our ML algorithms take time-series data as inputs to extract the representations of the machine‟s health 

condition. Given that our data have been collected with a great level of detail by the maintenance department, 

the desired output in the first step (failure prediction) is the day and duration of failure, categorized by the 

machine coding and type of failure in the system and its components. In other words, in the first stage, as 

seen in Table 1, we aim to determine which machine and components will fail on what date, for how many 

minutes, and due to what reason. 

In the second stage, (master planning), based on the predicted downtime obtained for the machines in the 

first step, the actual remaining usable capacity of the machines has been calculated. This means that the 

proportion of time lost to total available machine time has been computed and then subtracted from the total 

capacity. For instance, this deterioration in the model is presented as a reduction of production lines 

capacities in function of the time evolution in [33]. According to this capacity and the demand for each 

product within the planning horizon, we determined the number of products that could be produced in-house, 

outsourced, backordered or produced with extended capacity through our LP model. 

 

2.1 Plant Description 

The Zarin plant is one of the manufacturing units in Tehran, Iran, where the main product groups 

produced include Sheet Freezer Bag, Freezer Bag Roll, Dispenser Box Freezer Bag, Garbage Bag Roll, Easy 

Tie Garbage Bag, Plastic Disposable Tablecloth and Disposable Glove. The main goal in the sewing hall is to 

manufacture convenience items designed for household and commercial use from semi-finished products that 

have come from the previous hall, production hall. These semi-finished products are typically made from 

various types of plastic materials. In the sewing multi-machine system, different advanced packaging 

machines equipped with servo drive motors and PLC systems perform perforating, sewing, and cutting 

operations with high efficiency according to the dimensions of the desired products. These semi-automatic 

machines efficiently process materials across multiple lines, handle various roll widths, and produce high 

volumes of final products per hour. Automation including pneumatic jacks and inverter controls ensures 

precise, high-speed production with minimal manual intervention. The functioning of the machines consists 

of cycles with irregular lengths, depending on the size, weight, dimensions and thickness of the products. A 

cycle consists of five steps: 

 

1. Loading the semi-finished rolls onto the machine's opener 

2. Guiding the film towards the sewing and cutting section 
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3. Sewing the film along the specified lines and at the same time cutting or perforating to the required 

size with a cutting or perforating blade 

4. Counting and collecting the finished bags after a specified number 

5. Batching and packaging the finished product for easy separation by the operator 

 

Table 1. Failure prediction of 5
th 

month 

Date 

 

Machine  

Coding 

 

System-Wide 

 Failure Component Failure Start Time Finish Time 

 

Failure (mins) 

 

 

Shift 

29/05/2023 SCA101 
Mechanical 

Perforating Blade 

Failure 

[Timestamp('2023-05-

29 22:00:00')] 

[Timestamp('2023-05-

29 12:00:00')] 

600 Night 

09/05/2023 SCA106 
Mechanical 

Settings Failure 
[Timestamp('2023-05-

09 15:00:00')] 

[Timestamp('2023-05-

09 17:30:00')] 

150 Day 

11/05/2023 SCA108 
Mechanical Collector Plug 

Failure 

[Timestamp('2023-05-

11 20:00:00')] 

[Timestamp('2023-05-

11 08:00:00')] 

720 Night 

21/05/2023 SCA108 
Mechanical 

Settings Failure 
[Timestamp('2023-05-

21 09:00:00')] 

[Timestamp('2023-05-

21 11:00:00')] 

120 Day 

27/05/2023 SCA108 
Mechanical 

Fireproof Failure 
[Timestamp('2023-05-

27 20:00:00')] 

[Timestamp('2023-05-

27 21:30:00')] 

90 Night 

13/05/2023 SCA201 
Mechanical 

Settings Failure 
[Timestamp('2023-05-

13 08:00:00')] 

[Timestamp('2023-05-

13 09:40:00')] 

100 Day 

24/05/2023 SCA201 
Mechanical Plastic Roller 

Failure 

[Timestamp('2023-05-

24 08:00:00')] 

[Timestamp('2023-05-

24 17:00:00')] 

540 Day 

31/05/2023 SCA201 
Mechanical Plastic Roller 

Failure 

[Timestamp('2023-05-

31 08:00:00')] 

[Timestamp('2023-05-

31 10:00:00')] 

120 Day 

20/05/2023 SCA202 
Electrical 

SSR Failure 
[Timestamp('2023-05-

20 08:00:00')] 

[Timestamp('2023-05-

20 10:00:00')] 

120 Day 

21/05/2023 SCA202 
Mechanical 

Glue Failure 
[Timestamp('2023-05-

21 08:00:00')] 

[Timestamp('2023-05-

21 12:00:00')] 

240 Day 

11/05/2023 SCA301 
Electrical Fault in Electrical 

Panel 

[Timestamp('2023-05-

11 08:00:00')] 

[Timestamp('2023-05-

11 14:00:00')] 

480 Day 

22/05/2023 SCA301 
Mechanical Metal Roller 

Failure 

[Timestamp('2023-05-

22 09:00:00')] 

[Timestamp('2023-05-

22 14:00:00')] 

420 Day 

06/05/2023 SCA302 

Mechanical 

Blade Failure 
[Timestamp('2023-05-

06 10:00:00')] 

[Timestamp('2023-05-

06 14:00:00')] 

240 Day 

27/05/2023 SCA303 
Mechanical 

Settings Failure 
[Timestamp('2023-05-

27 08:30:00')] 

[Timestamp('2023-05-

27 10:00:00')] 

90 Day 

27/05/2023 SCA304 
Mechanical 

Cutting Blade 

Failure 

[Timestamp('2023-05-

27 21:30:00')] 

[Timestamp('2023-05-

27 23:00:00')] 

90 Night 

31/05/2023 SCA305 
Mechanical Cutting Blade 

Failure 

[Timestamp('2023-05-

31 08:00:00')] 

[Timestamp('2023-05-

31 23:40:00')] 

940 Day 

 

2.2 Assumptions 

The following assumptions are taken into account. 

 

a. The manufacturing system consists of several parallel machines, each group of which is capable of 

producing a specific group of products. 

b. Maintenance actions restore the machine to an „as-good-as new state‟. 

c. Repair should be carried out as soon as the failure occurs and the factory's technical personnel 

possess adequate knowledge for fixing any type of repair. 

d. The spare parts for machine components that need replacement are available in the spare parts 

warehouse. 

e. The planning time horizon initially begins with a new or as good as new machine. 

f. The demand for products in each planning period might exceed the factory's production capacity.  
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g. Each machine has the ability to process a specific group of products, and the nominal capacity of the 

machines is the same in each planning period 

h. Part of the demand that cannot be met in the current period will be fulfilled through outsourcing, but 

outsourcing capacity is limited for each product in each planning period. 

i. Any unmet demand beyond both in-house and outsourcing capacity will be placed on backorder and 

fulfilled in the following periods, when capacity becomes available. 

j. There is a lead time for backorders, meaning they cannot be fulfilled immediately in the next period, 

but only not later than a certain number of months. 

k. Backorders incur increasing penalties the longer they remain unfulfilled. 

l. The longer a backorder remains unfulfilled, the higher the penalty. This penalty increases over time 

to reflect customer dissatisfaction due to delayed deliveries. The penalty multiplier is set 1.2 in the 

model which means that if a backorder is not fulfilled in the specified lead time, the penalty cost 

will increase by 20% over the base backorder cost. 

m. There are no backorders carried over from months prior to the start of the planning horizon. 

n. There is also an opportunity to extend the in-house production capacity by adding additional 

machines. This capacity is purchased at a per unit cost and increases the amount of capacity 

available in other periods in the future. 

o. Capacity extensions are dynamic and can be added at any month. When the extension is made, the 

increased capacity is available for all future periods.  

p. Backorders older than 2 months that cannot be completed by in-house production or outsourcing 

must be finished through capacity extension. 

q. Capacity loss is resulted from those machine failures that exceed the WFS threshold. 

 

2.3 Problem description 

In the assumed multi-machine production system, the machines are subject to random failures. When an 

unexpected machine failure happens, a maintenance action is performed, meaning the machine is returned to 

working condition without affecting its operational age. Alternatively, if necessary, the pneumatic, electrical, 

or mechanical components should be replaced. Let us consider a set of machines m ϵ {1,2, …, M} that are 

responsible for sewing a set of group products p ϵ {1, 2, …, P} over a defined finite planning horizon T with t 

planning periods, t = {1, 2, …, T}. Each period has the same fixed length L. The capacity of machines during 

each planning period is the same. Parameters may vary based on production characteristic and planning 

tactics of the that specific business. For instance, in the numerical example, we set T=12. A pre-defined 

demand for product p in month t,     , should be met and any unmet demand in each planning period must be 

produced through outsourcing. If both in-house and outsourcing capacities are insufficient, the unmet 

demand will be placed on backorder and fulfilled in the following periods when capacity becomes available 

There is a lead time for fulfilling backorders. Backorders incur penalties that increase as the demand remains 

unfulfilled for a longer period. 

If the available in-house and outsourcing capacities are inadequate, the factory can increase in-house 

capacity by adding new machines that would boost the factory‟s production capacity in later time periods. 

Thus, the capacity and then flexibility can be increased to meet the upper future demand or to reduce 

backorders. 

 

2.4 ML Algorithms 

Different ML techniques are used to predict the machine health state that is stated in a binary-state. The 

proposed approach presents a data-based failure prediction model for a production system that can be 

incorporated into master planning. By collecting real historical data from the past year's machine failures in 

the designed format, the proposed framework helped to calculate the remaining in-house production capacity 

for product groups in each month, r_(p,t). Four ML approaches including deep neural network (DNN), 

Logistic Regression (LR), Support Vector Machine (SVM) and CatBoost (CB) are used to predict timing and 

type of failures in each planning periods. 

 

2.4.1 SVM Model 

SVM is a common supervised ML algorithm that is used for classification and regression analysis. The 

goal in this algorithm is to find a hyperplane that separates data points of different classes in a high-

dimensional space. In other words, SVM attempts to find the optimal decision boundary that maximizes the 

margin, or the distance between the decision boundary and the nearest data points of each class. To 
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accomplish this, SVM maps the data into a higher-dimensional feature space where it becomes easier to find 

a hyperplane that can separate the data [4]. Pinciroli et al. [21] predicted system failures utilizing six 

algorithms including support vector machine where results were also compared on multivariate time series. 

In reference [21], the impacts of different reading and prediction windows were tested for SVM, considering 

accuracy, precision, recall, and F1-score metrics. 

In this implementation, SVM is employed particularly to predict potential failures to minimize unplanned 

downtime. After preprocessing the data and feature engineering, we applied PCA to reduce dimensionality 

while retaining the majority of the variance, preventing overfitting. In order to ensure optimal performance, 

we tuned the hyperparameters using GridSearch with cross-validation. After training and evaluation with 

regular performance metrics, it is used to predict machine failures over specific months, allowing for early 

intervention and maintenance planning. 

 

2.4.2 Logistic Regression (LR) Model 

     The LR model is a common mathematical model in ML, and it belongs to probability type regression to 

describe and infer the relationship between multi-class dependent variables and a set of explanatory 

variables. The logistic function of the LR is Sigmoid function, which constrains the logistic probability of an 

event occurrence between 0 and 1 [19]. Experimental results in [21] demonstrate that basic, general-purpose 

algorithms, such as logistic regression, already achieve acceptable performances on complex datasets, where 

complexity is the mean of spectral entropies. Feng et al. [34] presented RUL estimation of aircraft engine by 

the combination of AEKFOS-ELM and logistic regression (LR) model and assessed its effectiveness on 

NASA engine degradation datasets. 

In this study, to boost the model's performance, hyperparameter tuning is conducted using GridSearch, 

focusing on optimizing the regularization strength and solver selection for the logistic regression model. The 

best model, selected through cross-validation, is assessed using various performance metrics, which makes 

the evaluation more reliable. The final model is applied for a specific number of months to predict failures 

and plan maintenance thus determining the particular machines most prone to fail and which months are 

likely to have failures. 

 

2.4.3 Deep Neural Network (DNN) Model 

Neural networks and their subdivisions have been a major area of interest within the field of integrating 

predictive maintenance and production planning. For all models, dense layers were used with Softmax 

activation function, and hidden layers were used with Rectified Linear Activation (ReLU). All deep learning 

and deep hybrid learning models were trained for more than 14 epochs [4]. Authors in [17], [18] and [21] 

employed a new hybrid deep learning method; CNN-LSTM to effectively predict the health condition of each 

machine. In reference [9], a generative deep learning model based on the conditional variational autoencoder 

(CVAE) was proposed for a PdM-integrated production scheduling problem using large-scale industrial 

condition monitoring data. In reference [15], several models based on deep neural networks (DNN) and 

recurrent neural networks (RNN) were compared, using criteria based on visual analysis, errors, regression 

coefficient, and accuracy measures. Gour & Waoo [7] implemented an ensemble learning algorithm with a 

deep learning model to predict short-term and long-term health and failure. By incorporating the Light GBM, 

random forest and decision tree, a novel Ensemble Learning model combined with Deep Neural Network 

(EnDNN) has been framed. Aghamohmmadghasem et al. [33] utilized a deep reinforcement learning 

approach to solve the optimal maintenance planning problem in the inland waterway transportation system. 

The DNN model which is proposed in this study comprises of multiple fully connected layers with ReLU 

activation functions to identify complex patterns in the data. It leverages features such as lagged emissions, 

rolling statistics, and time-based features to understand the changes in machine‟s behavior. Ensuring the 

model generalizes well to new data, regularization techniques such as dropout and early stopping are used to 

prevent overfitting. The model's predictions provide insights into potential failures across all machines 

throughout the entire planning horizon. 

 

2.4.4 CatBoost Model 

CatBoost is a new gradient boosting algorithm that successfully works with categorical features with the 

lowest information loss. CatBoost differs from other gradient boosting algorithms. First, it uses ordered 

boosting, an efficient modification of gradient boosting algorithms, to overcome the problem of target 

leakage. Second, this algorithm is useful on small datasets. Third, CatBoost can handle categorical features. 

This handling is usually completed at the preprocessing phase and essentially consists of replacing the 
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original categorical variables with one or more numerical values [36]. A search on the literature of machine 

failure and production planning integration reveals that no previous study has used CatBoost. In this research, 

the CatBoost model is tailored for predicting machine failures in a one-year planning horizon. After extensive 

data preparation, including the creation of lagged and rolling statistical features to capture time-based 

patterns in machine performance, it is then fine-tuned with strong regularization and cross-validated using 

Stratified K-Folds to ensure robustness. The model is further assessed on key performance metrics 

establishing that the model is able to detect machines likely to fail next, so that preventive maintenance can 

be planned. 

 

2.5 Master Production Planning (MPP) 

The main aim in MPP is to provide a clear production plan in the planning horizon that guides 

manufacturing activities, ensuring that the right product groups are made in the right quantities and at the 

right time to optimize the objective functions. It also aids in satisfying the customer demand, the management 

of inventory and minimizing production interuptions. In a production setting, fluctuating resource capacity 

restricts production line performance, and ignoring this fact renders planning inapplicable [37]. Although 

Master Production Scheduling (MPS) has been studied and used by both academia and industries for quite a 

long time, the real complexity involved in making a master plan when capacity is limited, when products 

have the flexibility of being made at different production lines, and when performance goals are tight and 

conflicting [38]. Reference [39] can be considered as a step of applying machine learning on master 

production scheduling, which has not gained any attention yet. MPP coordinates production activities with 

business goals, providing a strategic framework for managing demand, actual capacity, and inventory. In the 

current research work, we addressed the MPP problem in the context of the make to order (MTO) production 

environment. The objective is to find the optimal production quantity of each product group in-house and 

through outsourcing considering capacity fluctuation of the machines due to failures with the minimum cost 

imposed by the company considering that capacity extension and backorder are allowed. 

 

2.6 Mathematical Modeling 

A linear programming model has been introduced incorporating in-house and outsourcing production, 

dynamic capacity extension, and backorders with lead time as shown in Figure 1. The following notations are 

used in the model. 

Decision Variables: 

 

     
   : Amount of product p to produce in-house in month t 

     
   : Amount of product p to outsource in month t 

     
  : Backorder of product p in month t, carried over from t−k months ago (for k=1,2 where 

lead time is 2 months) 

     
   : Capacity extension for in-house production of product p in month t, which takes effect in 

future months (i.e., the number of additional units of capacity added) 

       

Parameters: 

 

     : Demand for product p in month t 

      : Remaining in-house production capacity for product p in month t 

      : Outsourcing capacity for product p in month t 

     
   : In-house production cost per unit for product p in month t 

     
   : Outsourcing production cost per unit for product p in month t 

     
  : Backorder cost per unit of product p in month t, with penalties increasing over time 

   
   : Capacity extension cost per unit for product p 

 lead_time = 2: Lead time for backorders in numerical example (in months) 

 penalty_multiplier: Penalty multiplier for delayed backorders, increasing with time 
 

     The objective function (Z) in this integrated model aims to minimize the summation of the total cost, 

as shown in Eq. (1) 
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     The first constraint (Eq. (2)) guarantees that the sum of the production (in-house and outsourced) plus 

backorders from previous months meet demand in each month. 
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     In-House capacity constraint is presented in Eq. (3), where the amount produced in-house cannot 

exceed the remaining in-house capacity that resulted from our prediction ML algorithms,     
   plus any 

capacity extension. The summation, ∑    
    refers to all months t, from month 1 to the current month t, in the 

planning horizon. 

 

      
          

    ∑    
   

 

   

                                                                                                                                 

 

As mentioned in assumptions, Outsourcing is limited by outsourcing capacity. 

 

    
                                                                                                                                                                   

 

Backorders for a product carried over from previous months should align with the backorders available 

from  

earlier months (reflecting a lead time of 2 months). It is shown in Eq. (5) where     
  and     

  are 

backorders carried over from 1 and 2 month ago, respectively. 

 

       
         

           
         

                                                                                                                        

 

     Eq. (6) ensures that if backorders are older than 2 months, they must be met by capacity extension. 

 

    
        

                                                                                                                                                             

 

    Amount of in-house and outsourced production cannot be negative, as well as backorders. 

 

    
       

        
      

                                                                                                                                         

 

     Additionally, non-negativity of capacity extensions is shown in the Eq. (8). 

 

    
                                                                                                                                                                     

 

This linear programming (LP) model minimizes the total cost incurred from in-house production, 

outsourcing, backorders with penalties, and capacity extensions, subject to capacity constraints and demand 

satisfaction. The decision variables     
   and     

     determine how much of each product is produced in-house 

and outsourced, respectively, while adhering to production capacity, cost limitations and backorder lead 

times.     
  and     

    determine the amounts of backorders carried over from previous months and the capacity 

extensions added to increase future in-house production, in corresponding order, while accounting for lead 

time constraints, backorder penalties, and the need to expand production capacity to meet future demand. 

A critical aspect of the problem is that a portion of the in-house production capacity has been lost due to 

predicted machine failures, causing the remaining capacity,      , to fall below the nominal capacity of the 
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machines. This reduction in capacity is predicted through ML models, which forecast potential machine 

failures over the planning horizon. To mitigate capacity shortages, the model allows for capacity extensions, 

    
   , which provides flexibility to adjust future in-house production capacity. 

 

  

 Fig. 1. Dynamic linear programming model structure diagram 

 

 

2.7 Dynamic Process Flow 

The model‟s ability to respond in fluctuating conditions in the production environment through a 

combination of lead time considerations, backorders, capacity adjustments, and outsourcing demonstrate the 

dynamic nature of the model. Backorders which introduce a delay in meeting customer demand because of 

insufficient production or capacity are vital elements in the model. Backorders are dynamically tracked 

across multiple months according to predetermined lead time of two months, reflecting real-world delays in 

this business. This is mathematically shown through the backorder variables b_(p,t)^1 and b_(p,t)^2, which 

represent the backorders carried over from 1 and 2 months ago, respectively. This approach ensures that any 

unmet demand in a given month m will be carried over and penalized, and the penalty factor increases over 

time. The backorder flow is thus no constant, it highlights both the unmet demand and the delay penalties, 

which force organizations to ensure timely production to minimize their total costs. Another dynamic feature 

is the model‟s ability to adjust in-house production capacity regarding the predicted failures of the machines 

and demand fluctuations. In-house production capacity, r_(p,t)^in , is sensitive to the predicted failures and 

could decline. These reductions lead to the fact that the nominal capacity may not always be available, which 

explains why flexibility in production is significant. To address capacity shortages, the model gives the 

possibility to the possibility of capacity extensions, c_(p,t)^ext, which allow for the dynamic expansion of 

future production capacity. We combine in-house production and outsourcing to allow for flexibility. 

Outsourcing helps quickly solve capacity shortages, but at a potentially higher cost. The model identifies the 

optimal level of in-house production and outsourcing so as to meet the demand without incurring high 

backorder costs and increasing cost. 

 

3. NUMERICAL EXAMPLE/CASE STUDY 

3.1 Dataset Description  
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To validate the proposed framework and mathematical model, historical data collected from the daily 

emergency forms were used: they were available in the maintenance software application that was filled by 

the expert in the maintenance department from April 2023 to March 2024. An example of the report from the 

maintenance software for the 26th of April is presented in Excel format that is shown in Table 2. 
 

Table 2. Software report 

 

Date 

 

 

Machine 

Coding 

 

System-wide 

Failure  

 

Component  

Failure 

 

Maintenance 

Action 

 

Start 

Time 

 

Finish 

Time 

 

Failure (min) 

 

Maintenance 

(min) 

 

Maintenance 

Responsible 

 

Shift 

26/04/2023 SCA202 Mechanical Fireproof Failure Replacement 05:50:00 06:15:00 25 20 Head Shift Night 

26/04/2023 SCA301 Mechanical Settings Failure Resetup 08:00:00 09:30:00 90 60 Head Shift Day 

26/04/2023 SCA202 Mechanical Settings Failure Resetup 09:00:00 12:00:00 180 120 Head Shift Day 

26/04/2023 
SCA302 

Mechanical 
Blade Failure 

Replacement 
10:00:00 12:30:00 150 120 

Supervisor 
Day 

26/04/2023 SCA201 Mechanical Blade Failure Replacement 20:00:00 23:00:00 180 120 Head Shift Night 

 

 
The report for the mentioned time period represents downtime events of 22 machines in 15 attributes. The 

attributes describing the machines were segmented into three categories as follows: machine specification 

(machine coding), failure information (including system-wide and component failures, maintenance actions 

and related responsible) and time values such as date, shift, start time, finish time, duration of downtime and 

net maintenance time which are used for developing our ML algorithms to forecast future failures.  

     As demonstrated in Figure 2, study starts with collecting data and ends with the evaluation of the 

trained ML models using performance metrics. 

 

 
 

 Fig. 2. Data procedures 

 

 

3.2 Data Collection  

The dataset used for the numerical example was obtained from operational data of the maintenance 

software application gathered over a year. Converting it to an Excel file, an initial failure dataframe was built. 

 

3.3 Data Pre-Processing  

Because each row is considered unique when at least one element in each column is different, the first 

occurrence of duplicated rows was kept and all others were removed. The Date, Start Time, and Finish Time 

columns were converted to the proper date-time format to ensure consistency and coerce invalid dates or 

times to NaT values. After creating the new unified Time columns, the original columns were dropped. 

Another key step in data cleansing is dropping rows where critical fields are missing or have null values. 

Finally, we ensure that non-numeric values were transformed into numeric. 

 

3.4 Feature Engineering 

To provide the model with valuable information such as historical patterns and cumulative behavior that 

improve its ability to predict machine failures, we added some features to the dataset. We extracted several 
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time-related features from the raw timestamp data such as hour of the day, day of the week and month to 

identify temporal patterns. Lag features of experienced downtime were also introduced to enable the model to 

learn from the machine's recent downtime history which is often a good indicator of future failures. In 

addition to lag features, the rolling mean and sum of downtime were computed over multiple time windows 

(7, 14, and 30 days) to capture short-term trends. To reflect the long-term operational history of the machine, 

the total downtime is also calculated to provide a broader view of the machine's performance. In the final step 

of feature engineering, we created a binary target variable (WFS) that indicates whether a machine is likely to 

experience significant downtime in the near future. These features derived from existing time and downtime 

values, help the ML model capture both short-term and long-term patterns in failure behavior. 

 

3.5 Model Training 

We separately trained a binary classification model using SVM, LR, DNN and CatBoost algorithms. 

Using the train-test-split function from the scikit-learn library, the dataset was split into training and testing 

sets using an 80-20 proportion: 80% of the data used for training and 20% reserved for testing. In order to 

avoid overfitting during training process, we used techniques like hyperparameter tuning and early stopping. 

To ensure robust performance across different data splits, we employed stratified K-fold cross-validation 

with CatBoost. We also used a feature scaling class, StandardScaler from the scikit-learn library, to 

normalize the input features. 
 

3.6 Model Evaluation 

We used common standard metrics to assess the efficiency of our algorithms. The formulas for measuring 

accuracy, precision, recall and F1 score are as follows as mentioned in [7]: 

 

         
     

           
                                                         

 

          
  

     
                                                                             

 

       
  

     
                                                                                         

 

            
                

                
                                                

 

     Where true positives (tp) is the number of instances where the model correctly predicted the positive 

class. True negatives (tn) represents the number of instances where the model correctly predicted the negative 

class. False positives (fp) illustrates the number of instances where the model incorrectly predicted the 

positive class (also known as Type I error) and the number of instances where the model incorrectly 

predicted the negative class (also known as Type II error) is called false negatives (fp) [4]. We also used 

another usual performance metric named AUC (Area Under the Curve) to evaluate the quality of our binary 

classification models. Specifically, it measures the area under the ROC (Receiver Operating Characteristic) 

curve, which plots the True Positive Rate (TPR) against the False Positive Rate (FPR) at various threshold 

settings. It is a graphical representation that illustrates the diagnostic ability of the classifier as a discriminant 

threshold is varied [5]. 

 

4. RESULTS 

In a real application of the proposed approach, we addressed the problem in the three specified scenarios 

using an Intel Core i5-5200U CPU, 8 GB RAM, Intel HD Graphics 5500 GPU, window 10 as the operating 

system. 

Table 3 shows the performance of our ML models based on standard performance metrics. In addition, 

the highest values for each metric were highlighted among all algorithms. The DNN model achieves the best 

results across most evaluation metrics including Accuracy, Recall, F1-score, and AUC, while ranking second 
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in Precision. Therefore, based on these findings, the DNN model is the most effective strategy in terms of 

performance metrics and superior to all three other algorithms. 

 

 

 

 

 

Table 3. Model evaluation 
Standard performance metrics 

ML methods Accuracy Precision Recall F1 score AUC 

SVM 0.9484 0.9343 0.9275 0.9309 0.9442 

LR 0.9490 0.9706 0.8919 0.9296 0.9965 

DNN 0.9796 0.9730 0.9730 0.9730 0.9969 

CatBoost 0.9000 0.9924 0.7318 0.8424 0.9959 

 

The AUC train and test in DNN model are presented in the Figure 3 for 50 number of epochs. AUC 

ranges in value from 0 to 1 [7]. Train AUC is represented in baby blue color while the test AUC is shown in 

red color. As seen, both curves increase rapidly in the initial epochs, indicating the model is learning well, 

and they plateau around an AUC score of 0.99, which highlights excellent performance. 

 

 

 
Figure. 3. Training vs Test AUC 

 

 

4.1 Dynamic linear programming (DLP) illustrative example 

Let us optimize production decisions for the 7 product groups mentioned in section 2 over a 12-month 

planning horizon. The objective is to minimize total costs, including in-house production, outsourcing, 

backorders, and capacity extensions, while meeting monthly demand. Three scenarios (S1, S2 and S3) are 

considered that differ in machine failure calculations. The first scenario is the one presented in the original 

problem. In the second scenario, we assumed that machine failure values are 50 percent higher than the 

estimated values. And in the third one, the problem is solved without machine failures, assuming that no 

machine capacity is lost due to breakdowns. 

Table 4 gives a summary of the costs. We used the latest real production costs and procurement prices for 

in-house and outsourcing costs for each product group. To reflect the actual cost of production for backorders 

without adding unnecessary complexity, we assumed backorder cost as the average of in-house and 
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outsourcing costs, which indicates a penalty cost for delaying fulfillment of the demand. Our rough 

calculations for equipment and infrastructure needed for capacity expansion have led us to the costs of 

capacity extension per unit of each product group in the last column of the table. Distribution of demand for 

each product group for 12 months planning period is presented in table 5. 

 

 

Table 4. Production cost  
P ID Product group In-house cost per 

unit ($) 

Outsourcing cost 

per unit ($) 

Backorder cost per 

unit ($) 

Capacity extension 

cost per unit ($) 

1 Sheet Freezer Bag 2.25 2.43 2.34 62.5 

2 Freezer Bag Roll 1.4 1.54 1.47 70 

3 Dispenser Box 

Freezer Bag 

2.3 2.65 2.475 65 

4 Garbage Bag Roll 0.75 0.795 0.7725 50 

5 Easy Tie Garbage 

Bag 

1.18 1.28 1.23 55 

6 Plastic Disposable 

Tablecloth 

1.86 3.55 2.705 75 

7 Disposable Glove 2.2 2.45 2.325 55 

 

The nominal in-house production capacity, as well as the outsourcing production capacity, for each 

product group are presented in Table 6. As can be seen, the nominal production capacity is assumed to be 

constant across all months. However, the remaining in-house production capacity,     , is calculated by 

deducting the predicted downtimes obtained from ML models from the nominal capacity. 

 

Table 5. Demand quantities (per carton) 
 Months 

P ID 1 2 3 4 5 6 7 8 9 10 11 12 

1 4,610 5,809 6,008 5,916 6,962 7,133 6,205 5,926 6,315 7,239 7,667 8,530 

2 3,601 5,450 4,746 4,176 4,663 4,507 5,023 4,704 5,147 6,460 6,678 5,621 

3 2,512 4,146 4,533 7,251 4,334 4,392 5,888 3,685 4,785 7,193 6,803 7,358 

4 7,304 10,195 10,137 9,845 10,497 10,780 11,707 10,460 11,059 12,160 13,370 13,570 

5 3,611 5,570 6,049 5,207 5,472 5,372 5,187 4,628 4,549 5,674 4,984 5,507 

6 6,755 8,300 7,175 7,936 7,701 8,359 7,555 7,020 7,288 8,907 9,592 10,215 

7 658 1,507 1,640 1,462 1,700 1,369 1,591 1,338 2,028 1,963 2,402 1,734 

 

The optimal master production plan for each product over a 12-month future planning horizon for all 

scenarios utilizing the DNN algorithm is presented in Table 7 to 13. The tables show the amount of in-house 

production, outsourcing, any necessary capacity extensions, the backordered quantities in carton, and the 

associated total costs. These results were obtained using a DLP model programmed in Python utilizing the 

SciPy linprog solver with the Highs method. As seen in the tables, the DLP process dynamically balances 

production allocation decisions across months for different product groups to minimize overall cost, 

considering fulfillment of demand and available or future production capacity in the proposed scenarios. 

Figure 4 provides a detailed view of the decision variables (summation of product groups) as well as the 

optimal production planning strategy during a 12-month planning horizon for three scenarios (S1, S2, and 

S3). We see stable in-house production levels that have a gradually increasing trend across the planning 

horizon. Notably, in the last months, values of S2 are slightly lower than S1 and S3. This suggests that in this 
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particular scenario, resources may have been reallocated to other strategies such as outsourcing or capacity 

expansion because of capacity loss from machine failures. This trend supports the key role of in-house 

production as the main base to meet demands with only minor adjustments.     

 

 

 

 

 

Table 6. In-house and outsourcing capacity (per carton)    
ID In-house Outsourcing 

1 4,480 1,250 

2 4,200 500 

3 6,000 300 

4 8,800 750 

5 4,800 200 

6 7,800 250 

7 960 300 

 

 

 

Table 7. Optimal production plan and total costs for sheet freezer bag in all scenarios 
Month In-house Production 

(S1-S2-S3) 

Outsource Production 

(S1-S2-S3) 

Capacity Extension 

(S1-S2-S3) 

Backorder 

(S1-S2-S3) 

Total Cost ($) 

(S1-S2-S3) 

1 4467,4454,4480 143,156,130 0,0,0 0,0,0 10398.24,10400.58, 10395.9    

2 4480,4480,4480 1250,1250,1250 0,0,0 79,79,79 13302.36, 13302.36,13302.36 

3 4443,4406,4480 1250,1250,1250 0,0,0 394,431,357 13956.21,13959.54,13952.88 

4 4476,4472,4480 1250,1250,1250 584,625,543 0,0,0 49608,52162.5,47055 

5 5017,5012,5023 1250,1250,1250 0,0,0 695,700,689 15952.05,15952.5,15951.51    

6 5033,5042,5023 1250,1250,1250 0,0,0 1545,1541,1549 17977.05,17987.94,17963.91   

7 5021,5019,5023 1250,1250,1250 1479,1477,1481 0,0,0 106772.25,106642.8,106901.8 

8 5926,6295,5926 0,0,0 0,0,0 0,0,0 13333.5,1333.5,1333.5 

9 6315,6315,6315 0,0,0 0,0,0 0,0,0 14208.75,14208.75,14208.75   

10 6540,6577,6504 699,662,735 0,0,0 0,0,0 16413.57,16406.91,16420.05    

11 6527,6550,6504 1140,1117,1163 0,0,0 0,0,0 17455.95,17451.81,17460.09     

12 6533,6563,6504 1250,1250,1250 0,0,0 747,717,776 19484.73,19482.03,19487.34 

Total 64778,64816,64742 10732,10685,10778 2063,2102,2024 3460,3468,3450 308863.16,311290.67,306433.04 
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Table 8. Optimal production plan and total costs for freezer bag roll in all scenarios 
Month In-house Production 

(S1-S2-S3) 

Outsource Production 

(S1-S2-S3) 

Capacity Extension 

(S1-S2-S3) 

Backorder 

(S1-S2-S3) 

Total Cost ($) 

(S1-S2-S3) 

1 3601,3601,3601 0,0,0 0,0,0 0,0,0 5041.4,5041.4,5041.4 

2 4178,4156,4200 500,500,500 0,0,0 772,794,750 7754.04,7755.58,7752.5 

3 4196,4193,4200 500,500,500 0,0,0 822,847,796 7852.74,7885.29,7820.12 

4 4200,4200,4200 500,500,500 298,323,272 0,0,0 27510,29260,25690 

5 4430,4388,4472 233,275,191 0,0,0 0,0,0 6560.82,6566.7,6554.94 

6 4479,4485,4472 28,22,35 0,0,0 0,0,0 6313.72,6312.88,6314.7 

7 4491,4510,4472 500,500,500 0,0,0 0,13,51 7104.44,7103.11,7105.77 

8 4486,4499,4472 250,218,283 0,0,0 0,0,0 6665.4,6634.32,6696.62 

9 4475,4477,4472 500,500,500 0,0,0 172,170,175 7287.84,7287.7,7288.05 

10 4452,4430,4472 500,500,500 1680,1700,1663 0,0,0 124602.8,125972,123440.8 

11 6165,6196,6135 500,482,500 0,0,0 13,0,43 9420.11,9416.68,9422.21 

12 5634,5621,5664 0,0,0 0,0,0 0,0,0 7887.6,7869.4,7929.6 

Total 54787,54756,54832 4011,3997,4009 1978,2023,1935 1811,1824,1815 224000.91,227105.06,221056.71 

 
Table 9. Optimal production plan and total costs for dispenser box freezer bag in all scenarios 

Month In-house Production 

(S1-S2-S3) 

Outsource Production 

(S1-S2-S3) 

Capacity Extension 

(S1-S2-S3) 

Backorder 

(S1-S2-S3) 

Total Cost ($) 

(S1-S2-S3) 

1 2512,2512,2512 0,0,0 0,0,0 0,0,0 5777.6,5777.6,5777.6 

2 4146,4146,4146 0,0,0 0,0,0 0,0,0 9535.8,9535.8,9535.8 

3 4533,4533,4533 0,0,0 0,0,0 0,0,0 10425.9,10425.9,10425.9 

4 5966,5932,6000 300,300,300 0,0,0 985,1019,951 16954.675,16960.63,16948.73 

5 5319,5353,5285 0,0,0 0,0,0 0,0,0 12233.7,12311.9,12155.5 

6 4392,4392,4392 0,0,0 0,0,0 0,0,0 10101.6,10101.6,10101.6 

7 5888,5888,5888 0,0,0 0,0,0 0,0,0 13542.4,13542.4,13542.4 

8 3685,3685,3685 0,0,0 0,0,0 0,0,0 8475.5,8475.5,8475.5 

9 4785,4785,4785 0,0,0 0,0,0 0,0,0 11005.5,11005.5,11005.5 

10 5954,5908,6000 300,300,300 0,0,0 939,985,893 16813.225,16821.28,16805.18 

11 5977,5955,6000 300,300,300 1465,1533,1396 0,0,0 109767.1,114136.5,105335 

12 7358,7358,7358 0,0,0 0,0,0 0,0,0 16923.4,16923.4,106923.4 
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Total 60515,60447,60584 900,900,900 1465,1533,1396 1924,2004,1844 241556.4,246018,237032.1 

 

 

 

 

Table 10. Optimal production plan and total costs for garbage bag roll in all scenarios 
Month In-house Production 

(S1-S2-S3) 

Outsource 

Production 

(S1-S2-S3) 

Capacity Extension 

(S1-S2-S3) 

Backorder 

(S1-S2-S3) 

Total Cost ($) 

(S1-S2-S3) 

1 7304,7304,7304 0,0,0 0,0,0 0,0,0 5478,5478,5478 

2 8783,8767,8800 750,750,750 0,0,0 662,678,645 7694.895,7695.255,7694.513 

3 8800,8800,8800 750,750,750 0,0,0 1249,1265,1232 8161.1025,8173.463,8147.97 

4 8800,8800,8800 750,750,750 1544,1560,1527 0,0,0 84396.25,85196.25,83546.25 

5 10344,10360,10327 153,137,170 0,0,0 0,0,0 7879.635,7878.915,7880.4 

6 10269,10210,10327 511,570,453 0,0,0 0,0,0 8107.995,8110.65, 8105.385 

7 10327,10327,10327 750,750,750 0,0,0 630,630,630 8828.175,8828.175,8828.175 

8 10327,10327,10327 750,750,750 0,0,0 13,13,13 8351.543,8351.543,8351.543 

9 10311,10293,10327 750,750,745 11,29,0 0,0,0 8879.5,9766,8337.525 

10 10355,10389,10327 750,750,750 0,0,1083 1055,1021,0 9177.4875,9176.723,62491.5 

11 10288,10256,11410 750,750,750 0,0,0 3387,3385,1210 10928.7075,10903.16,10088.48 

12 10330,10339,11410 750,750,750 5877,5866,0 0,0,2620 302193.75,301650.5,11177.7 

Total 116238,116172,118486 7414,7457,7368 7432,7455,2610 6996,6992,6350 464599.04,471208.635,230127.43

5 

 

 
Table 11. Optimal production plan and total costs for easy tie garbage bag in all scenarios 

Month In-house Production 

(S1-S2-S3) 

Outsource 

Production 

(S1-S2-S3) 

Capacity Extension 

(S1-S2-S3) 

Backorder 

(S1-S2-S3) 

Total Cost ($) 

(S1-S2-S3) 

1 3611,3611,3611 0,0,0 0,0,0 0,0,0 4260.98,4260.98,4260.98 

2 4794,4788,4800 200,200,200 0,0,0 576,582,570 6621.4,6621.7,6621.1 

3 4800,4800,4800 200,200,200 0,0,0 1625,1631,1619 7918.75,7926.13,7911.37 

4 4800,4800,4800 200,200,200 1832,1838,1826 0,0,0 106680,107010,106350 

5 5472,5472,5472 0,0,0 0,0,0 0,0,0 6456.96,6456.96,6456.96 

6 5372,5372,5372 0,0,0 0,0,0 0,0,0 6338.96,6338.96,6338.96 

7 5187,5187,5187 0,0,0 0,0,0 0,0,0 6120.66,6120.66,6120.66 

8 4628,4628,4628 0,0,0 0,0,0 0,0,0 5461.04,5461.04,5461.04 

9 4549,4549,4549 0,0,0 0,0,0 0,0,0 5367.82,5367.82,5367.82 

10 5674,5674,5674 0,0,0 0,0,0 0,0,0 6695.32,6695.32,6695.32 

11 4984,4984,4984 0,0,0 0,0,0 0,0,0 5881.12,5881.12,5881.12 
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12 5507,5507,5507 0,0,0 0,0,0 0,0,0 6498.26,6498.26,6498.26 

Total 59378,59372,59384 600,600,600 1832,1838,1826 2201,2213,2189 174301.27,174638.95,173963.59 

 

 

 

Table 12. Optimal production plan and total costs for plastic disposable tablecloth in all scenarios 
Month In-house Production 

(S1-S2-S3) 

Outsource 

Production 

(S1-S2-S3) 

Capacity Extension 

(S1-S2-S3) 

Backorder 

(S1-S2-S3) 

Total Cost ($) 

(S1-S2-S3) 

1 6755,6755,6755 0,0,0 0,0,0 0,0,0 12564.3,12564.3,12564.3 

2 7773,7746,7800 250,250,250 0,0,0 277,304,250 16094.565,16117.38,16071.75 

3 7452,7479,7425 0,0,0 0,0,0 0,0,0 13860.72,13910.94,13810.5 

4 7800,7800,7800 136,136,136 0,0,0 0,0,0 14990.8,14990.8,14990.8 

5 7701,7701,7701 0,0,0 0,0,0 0,0,0 14323.86,14323.86,14323.86 

6 7741,7682,7800 250,250,250 0,0,0 368,427,309 16281.2,16331.06,16231.345 

7 7743,7685,7800 180,250,64 0,47,0 0,0,0 15040.98,18706.6,14735.2 

8 7020,7020,7020 0,0,0 0,0,0 0,0,0 13057.2,13057.2,13057.2 

9 7288,7288,7288 0,0,0 0,0,0 0,0,0 13555.68,13555.68,13555.68 

10 7800,7847,7800 250,250,250 857,810,857 0,0,0 79670.5,17673.97,79670.5 

11 8640,7813,8657 250,250,250 0,0,0 702,2339,685 18856.81,21746.68,18842.445 

12 8635,7803,8657 250,250,250 0,4501,0 2032,0,1993 22445.16,352976.1,22380.585 

Total 92348,90619,92503 1566,1636,1450 857,4548,857 3379,3880,3237 250741.775,525954.54,250234.17 

 

 

Table 13. Optimal production plan and total costs for disposable glove in all scenarios 
Month In-house Production 

(S1-S2-S3) 

Outsource 

Production 

(S1-S2-S3) 

Capacity Extension 

(S1-S2-S3) 

Backorder 

(S1-S2-S3) 

Total Cost ($) 

(S1-S2-S3) 

1 658,658,658 0,0,0 0,0,0 0,0,0 1447.6,1447.6,1447.6 

2 949,938,960 300,300,300 0,0,0 258,269,247 3422.65,3424.025,3421.275 

3 932,904,960 300,300,300 0,0,0 666,705,627 4333.85,4362.925,4304.775 

4 960,960,960 300,300,300 868,907,829 0,0,0 50587,52732,48442 

5 1700,1700,1700 0,0,0 0,0,0 0,0,0 3740,3740,3740 

6 1369,1369,1369 0,0,0 0,0,0 0,0,0 3011.8,3011.8,3011.8 

7 1591,1591,1591 0,0,0 0,0,0 0,0,0 3500.2,3500.2,3500.2 

8 1338,1338,1338 0,0,0 0,0,0 0,0,0 2943.6,2943.6,29436 

9 1804,1820,1789 224,208,239 0,0,0 0,0,0 4517.6,4513.6,4521.35 

10 1813,1838,1789 150,125,174 0,0,0 0,0,0 4356.1,4349.85,4362.1 
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11 1821,1852,1789 300,300,300 0,0,0 281,250,313 5394.525,5390.65,5398.525 

12 1828,1867,1789 187,117,258 0,0,0 0,0,0 4479.75,4394.05,4567.9 

Total 16763,16835,16692 1761,1650,1871 868,907,829 1205,1224,1187 91734.675,93810.3,89661.125 

 

 

There are large variations over months as seen in outsource production subplot. Peaks in different months 

signify more reliance on outsourcing to meet demand because full utilization of in-house capacity was 

occurred. Earlier capacity extensions lead to significant drop in outsource values in months 5 and 8 for all 

scenarios. These variations in levels of outsourcing suggest that outsourcing can be viewed as a flexible 

mechanism to cope with spikes in demand when in-house capacity is insufficient. 

Periods where demand exceeds available supply are shown in the third subplot that result in backorders. 

For instance, backorders reach the highest level in month 3 in all scenarios possibly due to a rise in demand 

or capacity constraints. Another peak in month 11 especially high for S2 means that postponing the orders is 

more cost- effective. 

The capacity extension trends shown in the fourth subplot are other examples of addressing demand 

variations. As discussed earlier, investment to increase the manufacturing capacity is seen in month 4 which 

is clearly reflected in the same pattern of the total cost in Figure 6. A further peak is observable in the 12th 

month of the S2 applying capacity extension at the end of the planning horizon. 

The stacked area charts in Figure 5 represent the cumulative contributions of in-house production, 

outsource production, capacity extension, and backorders across a 12-month period for our scenarios. In S1, 

in-house production in blue color remains high with steady increase throughout the year. Outsource 

production which is colored orange plays a secondary role with an increasing trend toward the end of the 

year, indicating some reliance on external resources when internal capacity is unable to satisfy the demand. 

Capacity extension depicted in green shows minimal fluctuations. This means that internal production 

capacity in S1 is almost adequate. The backorders indicated in red maintained stable meaning that overall 

demand is adequately and consistently fulfilled. 

While internal production dominates the S2, a small growth of outsource production can be observed in 

contrast to the S1. This scenario depends more on external production to meet demand. Interestingly, the 

importance of capacity extension increases here. The capacity is extended where needed. Backorders remain 

low through S2 similar to S1 although they rise again later in the year. 

In S3, in-house production continues to dominate, but the pattern is different. Outsource production plays 

a much smaller role compared to the other scenarios because of fully usage of internal capacity. This means 

that S3 relies heavily on internal resources rather than external sourcing. Capacity extension is moved 

forward and values are higher during the last months in comparison with the previous two scenarios. Here, 

backorders are the least in all the three strategies indicating little unfulfilled demand. 

In general, our scenarios show distinct approaches to the management of production. S1 implements a 

balanced strategy in terms of internal production activities and external resource dependency. S2 shifts 

toward greater external resources, with a moderate role for capacity extension. S3 is the one with the greatest 

focus on internal production which leads to substantial in-house production, occasional capacity adjustments 

and thus lower backorders. Such distinctions can be considered as different management approaches 

employed by the firms; S3 relies on own capacity, S2 opts for external sources, while S1 employs stable 

moderate strategies. 

Finally, the total monthly and cumulative costs associated with each scenario are depicted in Figure 6. In 

the top subplot, we see a significant cost increase in month 4 that exactly corresponds to the capacity 

extension peak shown in Figure 4. This suggests the financial impact of capacity expansion in all scenarios. 

As can be seen, in the seventh month, the total costs are exactly proportional to the amount of capacity 

extension in Figure 4. Another increase is also evident in month 12, especially for scenario S2, implies that 

the model attempts to meet end-of-year demands. In the bottom subplot, S2 accumulates the highest total cost 

by the end of the period, showing a consistent increase throughout due to the high share of cumulative 

capacity extensions. S1 also rises steadily, but with some fluctuations, reaching a cumulative cost higher than 

that of third scenario. S3 despite its occasional spikes especially in the last month, accumulates the least total 

cost by the end of the period. This suggests that S3 maintains lower cumulative costs compared to the other 

two scenarios, because it relies heavily on inexpensive internal production. 
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5. DISCUSSION 

In contrast to existing literature that often uses environmental variables of machines and components or 

well-known datasets, we utilize event-based historical data of machine failures with a two-level classification 

(system and component) to predict future failures. Furthermore, unlike previous studies that have focused on 

integrating failure data with production planning primarily at the scheduling and planning levels, our research 

models this integration at the broader master production level within a real multi-machine system across 

several product groups. The main analytical outcomes of this research are as follows: 

 

 
Figure. 4. Scenario-based analysis of decision variables 

 

5.1 Enhancing Maintenance Decision-Making 

This research enhances maintenance decision-making by providing insights not only into when and for 

how long failures are likely to occur, but also which specific machines and components are at risk, and the 

potential causes of these failures. This enables the maintenance team to plan daily tasks effectively, allocate 

resources more efficiently and mitigate the risk of downtime. As shown in Figure 7, failure prediction results 

of the DNN algorithm indicate that the largest share of machine downtimes is due to mechanical failures, 

followed by electrical failures, with pneumatic failures accounting for a negligible proportion. Knowledge of 

the key factors of system-wide failures helps the maintenance manager in prioritizing training activities and 

recruitment needs. The comparison of the predicted percentage of failure for different components 

throughout the planning horizon is also shown in Figure 8. More than 60% of machine failures are due to five 
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main causes including machine settings, cutting blades, perforating blades, ovens, and plastic rollers failures. 

This analysis ensures the team that all the necessary spare parts are available. 
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Figure. 5. Stacked area chart for all scenarios 
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Figure. 6. Monthly cost trend and cumulative cost over months 

 

     These are two examples of analyses designed for the maintenance manager. Certainly, by analyzing the 

predicted failure results in more detail, such as examining a specific machine at a specified time, the 

maintenance team can make better use of this data. As a result, with early awareness of failure timing and 

causes, the gap between machine downtime due to failure and the machine repair or maintenance time can be 

reduced that leads to enhanced operational efficiency and reduced maintenance-related costs. 

 

5.2 Selecting Master Production Strategies 

In contrast to traditional MPP methods that rely on static assumptions regarding production capacity, our 

model adjusts production plans based on anticipated machine failures and thus dynamic changes in 

production capacity. For instance, if a failure is predicted, our model suggests adjustments in production 

quantities or proposes backordering. Additionally, when internal capacity is projected to be insufficient, the 

model recommends outsourcing strategies or capacity extensions to meet demand in advance. We presented 

three scenarios to provide managerial insight into the management of backorders, capacity extensions and 

outsourcing strategies. This research highlights distinct strategies available to production planning managers 

for addressing demand and capacity fluctuations. S3 with zero machine failures, suggests maximum in-house 
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production as shown in Figure 9, because it focuses on self-reliance and minimizes backorders and external 

dependencies. This approach is ideal for factories where internal capacity is abundant and reliable. Lower 

production costs and more control over production processes are seen in this case. In contrast, S2, with 

considerable capacity loss due to failures, shows greater reliance on capacity extension and results in more 

backorders. Although this strategy offers more flexibility in satisfying demand, it comes at a higher cost. S1 

represents a balanced approach, relying primarily on in-house production with limited external production. 

This strategy enables managers to run production lines steadily with occasional outsourcing in case of 

shortages in capacity. Surprisingly, as shown in Figure 9, in terms of unmet demand throughout planning 

horizon, S2 is the most successful in minimizing it. These unmet demands correspond to the 12th month of 

the scenarios, where S2 has achieved the lowest backorder as seen in Figure 4, or in fact, the lowest unmet 

demand. Our model provides valuable insights for production planning managers in choosing their 

production strategy, particularly in industrial environments where machine reliability is uncertain. 
 

 

 
Figure. 7. System-wide failure throughout planning horizon 

 

 

5.3 Optimizing Cost of production 

The analysis of the three scenarios (S1, S2, and S3) reveals the impact of machine failures on the 

correlation of various production costs with the total cost. The first scenario as shown in the first subplot of 

Figure 10 depicts the baseline condition presents a relatively moderate relationship between in-house 

production cost (0.36), outsourcing cost (0.30), capacity extension cost (0.89) and backorder cost (0.46) and 

total cost. In this scenario, machine failures are rather moderate regarding to the overall impact on production 

costs, but capacity extension becomes the key issue. 

     In S2 where machine failures are increased by 50%, the correlations of in-house production costs (0.67), 

capacity extension costs (0.95), and backorder costs (0.80) rise significantly. This is due to the fact that 

machine failures have a larger effect on the total production cost. The value reduces slightly reaching to 0.19 

in the right subplot of the heatmap which shows that outsourcing loses its precedence under higher machine 

failure conditions. The importance of capacity extension and backorder costs is high in S2 and they are the 

dominant contributors to total costs. On the other hand, the role of outsourcing costs is insignificant. 

     In S3 with no machine failure, in house production cost has a strong significant positive relation with total 

cost. The value of 083 suggests that the in-house production cost plays a more pronounced role. The 

correlations for capacity extension and backorder costs decreased to 0.6 and 0.73. The need for capacity 

extension and backordering is reduced because there are no machine failures. Outsourcing costs (0.61) 

increase in relevance. This indicates that in an uninterrupted production system, there is a tendency to 

outsource in capacity shortages.  
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Figure. 8. Predicted percentage of failure for each component 

 

 

  
Figure. 9. Sum of optimized production variables in the Scenarios 

 

 

 

In our proposed framework, the overall total cost has a substantial dependency on reliability of machines. 

Machine failures have a strong influence on cost structure, increasing the relevance of capacity extension and 

backorder costs. Removing these failures stabilizes the cost drivers, making in-house production and 

outsourcing more significant. Our model helps management identify cost drivers and plan for strategic 

decisions considering from a cost perspective. 
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Figure. 10. Heatmap of correlation between various production costs and the total cost 

 

 

5.4 Evaluating different lead times 

Understanding the relationship between lead times and key variables equips managers with actionable 

insights to enhance supply chain efficiency and adapt to dynamic market conditions. Therefore, we examine 

its impact on our key decision variables. As shown in Figure 11, the impact of lead time on in-house 

production reveals stable trends in all scenarios with slight variations. Therefore, the stability of in-house 

production across scenarios highlights its role as a foundational strategy for meeting demand. But, the impact 

of lead time on outsource production, capacity extension, backorder, and unmet demand indicates distinct 

trends that vary across scenarios. In all scenarios as seen in Figure 12, outsource production decreases 

steadily as lead time increases. This means that having longer lead times allows internal resources to play a 

significant role and reduce the reliance on outsourcing. Capacity extension displays a scenario-specific 

pattern. In S1, it increases sharply at LT=4, suggests reaction to satisfy demand, whereas in S2 it peaks at 

LT=2 before declining. In S3, capacity extension rises progressively. 

 

However, backorders and unmet demand trends are the most important in Figure 12 Both backorder and 

unmet demand grow consistently with lead times in all scenarios. There is a sharp rise at LT=4 except for 

unmet demand in the second scenario. Managing demand gets challenging by increasing lead time. Managers 

could explore several strategies to lessen this challenge. Persuading the customers to accept delivery of 

orders after certain specified dates would help to reduce the pressure on the supply chain. This transparent 

communication with customers for delays may also enhance their level of trust and ability to accept longer 

lead times. Additionally, backorders can be mitigated by investing in agile production or improving demand 

forecast. 
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Figure. 11. In-House production trend across different lead times 

 

 

 
Figure. 12. Outsource production, capacity extension, backorder 

 and unmet demand trends across different lead times 

 
 

6. CONCLUSION AND FUTURE RESEARCH 

 

     This paper tackles the problem of integrating MPP and failure prediction in a real-world multi-machine 

packaging system. The main focus of the study is the development of an innovative framework to predict the 

machine failures in the next planning horizons and optimize production planning. To achieve this, we 

introduced a binary target variable called WFS to forecast downtime in future planning horizons. Using this 

variable, we built ML models to forecast the machines‟ probable failures so that effective maintenance could 

be planned in advance to improve the master production plans. Following an evaluation of 4 ML models‟ 

effectiveness using standard performance metrics, the optimal model was selected. Our evaluation 

demonstrated that while all the models performed effectively, the Deep Neural Network (DNN) model 

consistently outperformed the others. Based on this model, we calculated the remaining capacity, which was 

then utilized as an input for the subsequent phase. Then, a DLP optimization model was formulated to 

determine the optimal production strategies. The output of the model represents the amount of optimal in-

house and outsourcing production, any necessary capacity extensions and the backordered quantities for each 

product in every period of the overall planning horizon. Our findings suggest that the proposed integrated 

ML-based predictive approach and the DLP optimization model can be a valuable resource for decision-

makers to choose their strategies. 

     Undoubtedly, the present paper was a case study with specific configurations. Future work could expand 

the research applying this framework on a wider variety of manufacturing systems containing more diverse 

machinery and complex production configurations. Moreover, another area for the development of ideas 
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could be the utilization of more advanced machine learning models such as ensemble methods to improve the 

accuracy of failure prediction. Furthermore, selection of the ML method by cost-oriented analysis is a new 

direction in the existing framework. It would be helpful for decision makers to analyze different cost factors 

such as the cost of maintenance against the cost of production in details. Finally, additional variables such as 

production limitations or maintenance schedules could be incorporated into the current framework to 

improve the robustness of the developed predictive model.  

     However, we plan to expand the model to include elements of the broader supply chain. Considering 

factors like inventory management, supplier reliability and logistics would allow production planning to be 

fully synchronized with these external factors. If production planning were synchronized with external 

factors, a more comprehensive and adaptive system could be achieved. 

This research focused on another example of an integrated failure prediction and production planning 

framework. We believe that if the scope of other supply chain factors expanded, this study would contribute 

to the development of mechanisms for supply chain systems to possess self-optimization for uncertain and 

complex conditions in the industrial settings. 
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