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ABSTRACT 

This study presents an optimized approach for liposome production using the microfluidic method by 

integrating Design of Experiments (DoE) and machine learning. Three DoE methodologies—Box-Behnken 

Design (BBD), Central Composite Design (CCD), and Full Factorial Design—were systematically compared 

to identify the most efficient strategy for process optimization while minimizing the number of experimental 

runs. Process modeling was performed using the Gradient Boosting Regressor algorithm, with model 

performance assessed based on R², MAE, and RMSE metrics. The findings demonstrated that the CCD 

approach achieved the highest predictive accuracy for liposome size (R² = 0.9870) with a reduced number of 

experiments. Conversely, the full factorial design yielded comparable accuracy but proved inefficient in terms 

of time and resource allocation due to the extensive number of required experiments. The BBD method was 

deemed unsuitable due to its lower predictive accuracy. This study underscores the potential of leveraging 

DoE in conjunction with machine learning to enhance liposome production efficiency and reduce experimental 

costs.   
 

Keywords: Design of Experiments, Liposome Production, Microfluidic Method, Optimization, Machine 

Learning 

 

 

1. INTRODUCTION 

Liposomes are nanometric structures composed of bilayer phospholipids that, due to their unique 

characteristics, are widely utilized in the pharmaceutical, biological, and therapeutic industries[1,2]. These 

nanocarriers play a crucial role in enhancing drug delivery efficiency by encapsulating and transporting 

drugs, proteins, and other bioactive compounds[3,4]. Due to their biocompatibility and ability to reduce drug 

side effects, liposomes are used in the treatment of diseases such as cancer, microbial infections, and genetic 

disorders. Recent advancements in nanomedicine have led to increased focus on optimizing liposome 

production processes[5,6]. 

Various methods for liposome production have been introduced, including traditional techniques such as 

sonication, solvent evaporation, ethanol injection, and thin-film methods, as well as more advanced 

approaches like microfluidics, electrohydrodynamic methods, and nanotechnology-based technologies[7,8]. 

The microfluidic method, which is examined in this study, is considered one of the innovative techniques for 

liposome production. It has garnered significant attention due to its precise control over operational 

parameters, the production of uniform structures, and its high scalability. However, optimizing this method 

requires a comprehensive understanding of the effects of process variables on the final liposome properties, 

which can be facilitated through the use of Design of Experiments (DoE) methods[9,10]. 

Design of Experiments (DoE) is a powerful statistical tool for planning and analyzing experiments that 

allows researchers to systematically assess the influence of various factors on a desired outcome[11,12]. This 

approach helps reduce laboratory costs, enhance accuracy, and minimize the number of required experiments. 

In the fields of biotechnology and pharmaceuticals, DoE is a key tool for optimizing production processes, 

improving yield, and enhancing the quality of pharmaceutical products[13,14]. 
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Among the various DoE methods, Central Composite Design (CCD), Box-Behnken Design (BBD), and 

Factorial Design are some of the most commonly used techniques for optimizing biological processes. These 

three methods have been employed to determine the optimal set of process conditions for the production of 

stable and uniform liposomes. CCD and BBD are frequently used for nonlinear modeling in pharmaceutical 

and biological studies, while Full Factorial Design is particularly effective in analyzing the interaction effects 

between variables. 

Machine Learning (ML) is an emerging approach in the analysis of complex data and the optimization of 

industrial and biological processes[15,16]. By using intelligent algorithms, such as Gradient Boosting 

Regressor, Random Forest, and Support Vector Machines (SVM), ML enables high-accuracy prediction and 

analysis of experimental data. The integration of machine learning with DoE methods forms a powerful 

combined approach for identifying complex patterns in data and optimizing production processes. 

In recent years, numerous studies have examined the impact of DoE and machine learning methods on the 

production and optimization of biological processes[17,18]. Some studies have shown that combining DoE 

with machine learning can improve model prediction accuracy and reduce the number of required experiments. 

For instance, researchers demonstrated that using the CCD method alongside the Gradient Boosting algorithm 

improves the prediction of liposome size. Other studies have emphasized the effectiveness of Factorial Design 

and BBD methods in optimizing production conditions. 

In this study, various DoE methods, including CCD, BBD, and Factorial Design, are compared for 

liposome production using the microfluidic method. Additionally, machine learning algorithms are employed 

to evaluate the performance of each of these methods. The aim of this research is to determine the optimal DoE 

method in terms of reducing the number of experiments, enhancing model accuracy, and optimizing liposome 

production conditions. The findings of this study could serve as a practical guide for selecting the most suitable 

DoE method in pharmaceutical and biological processes. 

  

 

2. METHOD AND MATERIALS 

2.1 Materials  

In this study, experimental data were collected from various studies conducted on liposome production 

using the microfluidic method. In all of these studies, phospholipids, cholesterol, and polyethylene glycol 

(PEG) were used as the main components in the formation of the liposomes. Ethanol as a solvent and an 

aqueous NaCl solution were used as the primary phases for liposome preparation. The quality of the raw 

materials and the precise conditions for each study were adjusted based on the standards established in those 

studies. 

 

2.2 Microfluidic System  

 The liposome production process in this study was based on a standard microfluidic system, which includes 

a microfluidic chip, a tubing system, a temperature control unit, and syringe pumps. This system allows for 

precise control of influencing parameters, including Flow Rate Ratio (FRR) and Total Flow Rate (TFR). In 

this method, the lipid solution and aqueous solution enter the microfluidic chip through separate paths and are 

mixed in micron-sized channels. 

 

2.3 Liposome Preparation Method  

Liposomes were produced by combining the lipid solution and aqueous phase within the microfluidic 

system. Initially, phospholipids, cholesterol, and PEG were dissolved in ethanol to prepare a lipid solution 

with a specific concentration. The aqueous solution consisted of NaCl at various concentrations, which were 

adjusted according to the experimental design. Both solutions were placed in polypropylene syringes and 

precisely adjusted within syringe pumps. 

The mixing process occurred in the microfluidic mixer, where parameters such as Total Flow Rate (TFR) 

and Flow Rate Ratio (FRR) were set before each experiment. To ensure the accuracy of the process, the system 

was cleaned with the corresponding solutions and degassed before each load. After the liposomes were formed, 

the resulting solution was collected in special tubes, and ethanol was removed by performing a vacuum 

evaporation process. Finally, the lost volume was replaced with pure water. 

 

2.4 Design of Experiments and Modeling 
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In this study, three experimental design methods, including Central Composite Design (CCD), Box-

Behnken Design (BBD), and Full Factorial Design, were used to optimize the liposome production process. 

Each of these methods suggested a specific number of experiments to determine the impact of various variables 

on liposome size. After collecting data from the different designs, modeling was performed using machine 

learning algorithms, including Gradient Boosting, to evaluate the prediction accuracy and efficiency of each 

design. The variables under investigation were adjusted within the ranges specified in Table 1 below. 

 

Table 1. Range of variables under investigation 
Factor Experimental values Unit 

Cholesterol concentration 0, 41, 19 % in molarity 

NaCl concentration 0, 9, 18 mg/mL 

Total flow rate 0.2, 0.5, 1, 1.5, 2 mL/min 

Flow rate ratio 3, 9, 15, 19, 39 - 

PEG concentration 1, 2, 3, 4, 5 % in molarity 

Temperature 15, 25, 35 C 

 

3. Results and discussion 

In this section, the results obtained from modeling liposome production using various Design of 

Experiments (DoE) methods, including Box-Behnken Design (BBD), Central Composite Design (CCD), and 

Factorial Design, are analyzed and compared. The primary objective of this section is to evaluate the efficiency 

and accuracy of each method in modeling the liposome production process and to determine the best method 

based on reducing the number of experiments and improving prediction accuracy through machine learning. 

After collecting data related to liposome production using the microfluidic method and applying the three 

experimental design methods to this data, the results obtained for modeling the process using the Gradient 

Boosting algorithm are presented in Table 2. 
 

Table 2. Accuracy results of different design of experiment (DoE) methods 

Methods R2 MAE RMSE 

BBD (Box-Behnken Design) 0.2583 9.5606 12.5859 

CCD (Central Composite Design) 0.9870 0.6628 2.4422 

Factorial Design 0.9860 1.0436 2.2464 

 
These results show that the CCD method has the best performance among the three methods studied. The 

Factorial Design method also has a very close performance to CCD, but BBD could not provide the desired 

accuracy. These results are discussed in detail below. 
 

3.1 Analysis of the Results from the BBD Method 

The Box-Behnken Design (BBD) method is a commonly used experimental design approach for 

investigating the effect of multiple variables on a response. However, the results of this study demonstrated 

that the use of this method in modeling liposome production via microfluidics did not provide an acceptable 

level of accuracy. The value R2=0.2583  indicates a weak correlation between the predicted and actual values. 

 

Possible reasons for this poor performance may include: 

 

• Insufficient distribution of experimental points in the parameter space: The BBD method covers 

central points but tends to consider boundary points less frequently. 

• Lack of sufficient training data for the machine learning model: This method generates fewer data 

points compared to other experimental designs, which may reduce the accuracy of the machine 

learning model. 

• Inadequate coverage of interactions between variables: In complex processes such as liposome 

production, interactions between factors like temperature, flow rate, salt concentration, and 

cholesterol can play a significant role. The BBD method may not adequately address these 

interactions. 
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Due to these limitations, the BBD method is not an optimal choice for experimental design in microfluidic 

liposome production, and alternative methods should be considered. 

 

3.2 Analysis of the Results from the CCD Method 

The Central Composite Design (CCD) method showed significantly higher accuracy than BBD. The value 

R2=0.9870 indicates that the model can predict the actual data very well. Additionally, the values of MAE = 

0.6628 and RMSE = 2.4422 reflect the low error of this method. 

Reasons for the superior performance of CCD include: 

• Better coverage of the parameter space: This method uses star points, which allow for the examination 

of extreme values and have a greater impact on training the machine learning model. 

• Better optimization of interactions between variables: Compared to BBD, CCD more effectively 

investigates the interactions between variables, leading to better performance in the machine learning 

model. 

• Increased data points without a significant increase in experimental costs: Unlike the factorial 

method, which exponentially increases the number of experiments, CCD provides a balance between 

the number of experiments and model accuracy. 

Thus, CCD is an ideal experimental design method for microfluidic liposome production, as it increases 

prediction accuracy and reduces the number of required experiments. 

3.3 Analysis of the Results from the Factorial Design Method 

The Factorial Design method also demonstrated excellent performance. The value R2=0.9860 indicates 

that the accuracy of this method is nearly as high as that of CCD. Additionally, the value of RMSE = 2.2464 

shows the low error of the model. 

This method provides a comprehensive view of the effects of different parameters by considering all 

possible combinations of variables. However, its main challenge lies in the significant increase in the number 

of required experiments, which may not be practical or cost-effective. 

4. Conclusion 

This study demonstrates the effectiveness of integrating Design of Experiments (DoE) with machine 

learning techniques to optimize liposome production via the microfluidic method. Among the three DoE 

methods—Box-Behnken Design (BBD), Central Composite Design (CCD), and Full Factorial Design—CCD 

was found to provide the highest predictive accuracy (R² = 0.9870) while minimizing the number of 

experimental runs. The CCD approach offers a balanced optimization of experimental efficiency and 

prediction accuracy, making it the most suitable choice for microfluidic liposome production. Although the 

Factorial Design also achieved high accuracy, its impracticality due to the large number of required 

experiments makes it less optimal. Conversely, the BBD method did not provide satisfactory results, primarily 

due to its inability to sufficiently cover the parameter space and account for variable interactions. 

The integration of machine learning, specifically the Gradient Boosting Regressor, further enhanced the 

model's predictive power, underscoring the potential of this combined approach in process optimization. This 

study not only highlights the advantages of using CCD in the production of liposomes but also provides 

valuable insights into the efficiency of experimental design methodologies in reducing resource consumption 

and improving the quality of outcomes. The findings are significant for both pharmaceutical and 

biotechnological industries, where the optimization of production processes is critical to ensuring high product 

quality while minimizing costs. Future research could focus on refining these models and extending them to 

other biotechnological processes. 
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