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ABSTRACT

This study presents an optimized approach for liposome production using the microfluidic method by
integrating Design of Experiments (DoE) and machine learning. Three DoE methodologies—Box-Behnken
Design (BBD), Central Composite Design (CCD), and Full Factorial Design—were systematically compared
to identify the most efficient strategy for process optimization while minimizing the number of experimental
runs. Process modeling was performed using the Gradient Boosting Regressor algorithm, with model
performance assessed based on R?, MAE, and RMSE metrics. The findings demonstrated that the CCD
approach achieved the highest predictive accuracy for liposome size (R? = 0.9870) with a reduced number of
experiments. Conversely, the full factorial design yielded comparable accuracy but proved inefficient in terms
of time and resource allocation due to the extensive number of required experiments. The BBD method was
deemed unsuitable due to its lower predictive accuracy. This study underscores the potential of leveraging
DoE in conjunction with machine learning to enhance liposome production efficiency and reduce experimental
costs.

Keywords: Design of Experiments, Liposome Production, Microfluidic Method, Optimization, Machine
Learning

1. INTRODUCTION

Liposomes are nanometric structures composed of bilayer phospholipids that, due to their unique
characteristics, are widely utilized in the pharmaceutical, biological, and therapeutic industries[1,2]. These
nanocarriers play a crucial role in enhancing drug delivery efficiency by encapsulating and transporting
drugs, proteins, and other bioactive compounds[3,4]. Due to their biocompatibility and ability to reduce drug
side effects, liposomes are used in the treatment of diseases such as cancer, microbial infections, and genetic
disorders. Recent advancements in nanomedicine have led to increased focus on optimizing liposome
production processes[5,6].

Various methods for liposome production have been introduced, including traditional techniques such as
sonication, solvent evaporation, ethanol injection, and thin-film methods, as well as more advanced
approaches like microfluidics, electrohydrodynamic methods, and nanotechnology-based technologies[7,8].
The microfluidic method, which is examined in this study, is considered one of the innovative techniques for
liposome production. It has garnered significant attention due to its precise control over operational
parameters, the production of uniform structures, and its high scalability. However, optimizing this method
requires a comprehensive understanding of the effects of process variables on the final liposome properties,
which can be facilitated through the use of Design of Experiments (DoE) methods[9,10].

Design of Experiments (DoE) is a powerful statistical tool for planning and analyzing experiments that
allows researchers to systematically assess the influence of various factors on a desired outcome[11,12]. This
approach helps reduce laboratory costs, enhance accuracy, and minimize the number of required experiments.
In the fields of biotechnology and pharmaceuticals, DoE is a key tool for optimizing production processes,
improving yield, and enhancing the quality of pharmaceutical products[13,14].
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Among the various DoE methods, Central Composite Design (CCD), Box-Behnken Design (BBD), and
Factorial Design are some of the most commonly used techniques for optimizing biological processes. These
three methods have been employed to determine the optimal set of process conditions for the production of
stable and uniform liposomes. CCD and BBD are frequently used for nonlinear modeling in pharmaceutical
and biological studies, while Full Factorial Design is particularly effective in analyzing the interaction effects
between variables.

Machine Learning (ML) is an emerging approach in the analysis of complex data and the optimization of
industrial and biological processes[15,16]. By using intelligent algorithms, such as Gradient Boosting
Regressor, Random Forest, and Support Vector Machines (SVM), ML enables high-accuracy prediction and
analysis of experimental data. The integration of machine learning with DoE methods forms a powerful
combined approach for identifying complex patterns in data and optimizing production processes.

In recent years, numerous studies have examined the impact of DoE and machine learning methods on the
production and optimization of biological processes[17,18]. Some studies have shown that combining DoE
with machine learning can improve model prediction accuracy and reduce the number of required experiments.
For instance, researchers demonstrated that using the CCD method alongside the Gradient Boosting algorithm
improves the prediction of liposome size. Other studies have emphasized the effectiveness of Factorial Design
and BBD methods in optimizing production conditions.

In this study, various DoE methods, including CCD, BBD, and Factorial Design, are compared for
liposome production using the microfluidic method. Additionally, machine learning algorithms are employed
to evaluate the performance of each of these methods. The aim of this research is to determine the optimal DoE
method in terms of reducing the number of experiments, enhancing model accuracy, and optimizing liposome
production conditions. The findings of this study could serve as a practical guide for selecting the most suitable
DoE method in pharmaceutical and biological processes.

2. METHOD AND MATERIALS

2.1 Materials

In this study, experimental data were collected from various studies conducted on liposome production
using the microfluidic method. In all of these studies, phospholipids, cholesterol, and polyethylene glycol
(PEG) were used as the main components in the formation of the liposomes. Ethanol as a solvent and an
aqueous NaCl solution were used as the primary phases for liposome preparation. The quality of the raw
materials and the precise conditions for each study were adjusted based on the standards established in those
studies.

2.2 Microfluidic System

The liposome production process in this study was based on a standard microfluidic system, which includes
a microfluidic chip, a tubing system, a temperature control unit, and syringe pumps. This system allows for
precise control of influencing parameters, including Flow Rate Ratio (FRR) and Total Flow Rate (TFR). In
this method, the lipid solution and aqueous solution enter the microfluidic chip through separate paths and are
mixed in micron-sized channels.

2.3 Liposome Preparation Method

Liposomes were produced by combining the lipid solution and aqueous phase within the microfluidic
system. Initially, phospholipids, cholesterol, and PEG were dissolved in ethanol to prepare a lipid solution
with a specific concentration. The aqueous solution consisted of NaCl at various concentrations, which were
adjusted according to the experimental design. Both solutions were placed in polypropylene syringes and
precisely adjusted within syringe pumps.

The mixing process occurred in the microfluidic mixer, where parameters such as Total Flow Rate (TFR)
and Flow Rate Ratio (FRR) were set before each experiment. To ensure the accuracy of the process, the system
was cleaned with the corresponding solutions and degassed before each load. After the liposomes were formed,
the resulting solution was collected in special tubes, and ethanol was removed by performing a vacuum
evaporation process. Finally, the lost volume was replaced with pure water.

2.4 Design of Experiments and Modeling
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In this study, three experimental design methods, including Central Composite Design (CCD), Box-
Behnken Design (BBD), and Full Factorial Design, were used to optimize the liposome production process.
Each of these methods suggested a specific number of experiments to determine the impact of various variables
on liposome size. After collecting data from the different designs, modeling was performed using machine
learning algorithms, including Gradient Boosting, to evaluate the prediction accuracy and efficiency of each
design. The variables under investigation were adjusted within the ranges specified in Table 1 below.

Table 1. Range of variables under investigation

Factor Experimental values Unit
Cholesterol concentration 0,41,19 % in molarity
NaCl concentration 0,9, 18 mg/mL
Total flow rate 0.2,05,1,15,2 mL/min

Flow rate ratio 3,9,15,19,39 -
PEG concentration 1,2,3,4,5 % in molarity
Temperature 15,25, 35 C

3. Results and discussion

In this section, the results obtained from modeling liposome production using various Design of
Experiments (DoE) methods, including Box-Behnken Design (BBD), Central Composite Design (CCD), and
Factorial Design, are analyzed and compared. The primary objective of this section is to evaluate the efficiency
and accuracy of each method in modeling the liposome production process and to determine the best method
based on reducing the number of experiments and improving prediction accuracy through machine learning.

After collecting data related to liposome production using the microfluidic method and applying the three
experimental design methods to this data, the results obtained for modeling the process using the Gradient
Boosting algorithm are presented in Table 2.

Table 2. Accuracy results of different design of experiment (DoE) methods

Methods R? MAE RMSE

BBD (Box-Behnken Design) 0.2583 9.5606 12.5859
CCD (Central Composite Design) 0.9870 0.6628 2.4422
Factorial Design 0.9860 1.0436 2.2464

These results show that the CCD method has the best performance among the three methods studied. The
Factorial Design method also has a very close performance to CCD, but BBD could not provide the desired
accuracy. These results are discussed in detail below.

3.1 Analysis of the Results from the BBD Method

The Box-Behnken Design (BBD) method is a commonly used experimental design approach for
investigating the effect of multiple variables on a response. However, the results of this study demonstrated
that the use of this method in modeling liposome production via microfluidics did not provide an acceptable
level of accuracy. The value R?=0.2583 indicates a weak correlation between the predicted and actual values.

Possible reasons for this poor performance may include:

o Insufficient distribution of experimental points in the parameter space: The BBD method covers
central points but tends to consider boundary points less frequently.

e Lack of sufficient training data for the machine learning model: This method generates fewer data
points compared to other experimental designs, which may reduce the accuracy of the machine
learning model.

e Inadequate coverage of interactions between variables: In complex processes such as liposome
production, interactions between factors like temperature, flow rate, salt concentration, and
cholesterol can play a significant role. The BBD method may not adequately address these
interactions.
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Due to these limitations, the BBD method is not an optimal choice for experimental design in microfluidic
liposome production, and alternative methods should be considered.

3.2 Analysis of the Results from the CCD Method

The Central Composite Design (CCD) method showed significantly higher accuracy than BBD. The value
R?=0.9870 indicates that the model can predict the actual data very well. Additionally, the values of MAE =
0.6628 and RMSE = 2.4422 reflect the low error of this method.

Reasons for the superior performance of CCD include:

e Better coverage of the parameter space: This method uses star points, which allow for the examination
of extreme values and have a greater impact on training the machine learning model.

e Better optimization of interactions between variables: Compared to BBD, CCD more effectively
investigates the interactions between variables, leading to better performance in the machine learning
model.

e Increased data points without a significant increase in experimental costs: Unlike the factorial
method, which exponentially increases the number of experiments, CCD provides a balance between
the number of experiments and model accuracy.

Thus, CCD is an ideal experimental design method for microfluidic liposome production, as it increases
prediction accuracy and reduces the number of required experiments.

3.3 Analysis of the Results from the Factorial Design Method

The Factorial Design method also demonstrated excellent performance. The value R?=0.9860 indicates
that the accuracy of this method is nearly as high as that of CCD. Additionally, the value of RMSE = 2.2464
shows the low error of the model.

This method provides a comprehensive view of the effects of different parameters by considering all
possible combinations of variables. However, its main challenge lies in the significant increase in the number
of required experiments, which may not be practical or cost-effective.

4,  Conclusion

This study demonstrates the effectiveness of integrating Design of Experiments (DoE) with machine
learning techniques to optimize liposome production via the microfluidic method. Among the three DoE
methods—Box-Behnken Design (BBD), Central Composite Design (CCD), and Full Factorial Desigh—CCD
was found to provide the highest predictive accuracy (R2 = 0.9870) while minimizing the number of
experimental runs. The CCD approach offers a balanced optimization of experimental efficiency and
prediction accuracy, making it the most suitable choice for microfluidic liposome production. Although the
Factorial Design also achieved high accuracy, its impracticality due to the large number of required
experiments makes it less optimal. Conversely, the BBD method did not provide satisfactory results, primarily
due to its inability to sufficiently cover the parameter space and account for variable interactions.

The integration of machine learning, specifically the Gradient Boosting Regressor, further enhanced the
model's predictive power, underscoring the potential of this combined approach in process optimization. This
study not only highlights the advantages of using CCD in the production of liposomes but also provides
valuable insights into the efficiency of experimental design methodologies in reducing resource consumption
and improving the quality of outcomes. The findings are significant for both pharmaceutical and
biotechnological industries, where the optimization of production processes is critical to ensuring high product
quality while minimizing costs. Future research could focus on refining these models and extending them to
other biotechnological processes.
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