

Bioequivalence Analysis of Empagliflozin and Linagliptin in Human Plasma Using LC-MS/MS: Validation and Stability Studies

Dariush Omidfar*¹, Ahad Sheikhloo⁷
Payesh Daruzist Azma Company, East Azerbaijan, Tabriz, Iran

ABSTRACT

This study presents a comprehensive bioequivalence analysis of Empagliflozin and Linagliptin ($^{1} \cdot /^{\circ}$ mg) in human plasma, utilizing a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) methodology. The method was validated according to EMEA and ICH $M^{1} \cdot$ guidelines to ensure specificity, precision, accuracy, matrix effect evaluation, and stability under various conditions. Calibration curves demonstrated excellent linearity over the concentration range of $^{1} \cdot ^{2} \cdot ^{n}$ ng/mL for both compounds. The method's lower limit of quantification (LLOQ) was established at $^{1} \cdot ^{2}$ ng/mL with a signal-to-noise ratio exceeding $^{1} \cdot ^{3}$, confirming the sensitivity of the assay.

Precision studies yielded within-run and between-run %RSD values within the acceptable limits, indicating high repeatability and reliability of the measurements. Matrix effects, assessed across six plasma sources, showed minimal interference, ensuring robustness of the results. Short-term and freeze-thaw stability assessments revealed deviations below $\pm 1 \cdot 1$, underscoring the suitability of the method for bioanalytical applications.

Plasma samples collected from healthy volunteers were analyzed to determine pharmacokinetic parameters, supporting the bioequivalence of test and reference formulations. This validated method enables accurate quantification of Empagliflozin and Linagliptin in clinical studies and reinforces its utility for therapeutic drug monitoring and bioequivalence assessments.

Keywords: Empagliflozin, Linagliptin, LC-MS/MS, Bioequivalence

\. INTRODUCTION

Type $^{\mbox{\scriptsize Υ}}$ diabetes mellitus ($T^{\mbox{\scriptsize Υ}}DM$) is a chronic metabolic disorder characterized by insulin resistance and impaired insulin secretion, leading to persistent hyperglycemia. Effective management of $T^{\mbox{\scriptsize Υ}}DM$ often necessitates combination pharmacotherapy to achieve optimal glycemic control. Empagliflozin, a sodium-glucose co-transporter $^{\mbox{\scriptsize Υ}}$ (SGLT $^{\mbox{\scriptsize Υ}}$) inhibitor, and linagliptin, a dipeptidyl peptidase- $^{\mbox{\scriptsize ξ}}$ (DPP- $^{\mbox{\scriptsize ξ}}$) inhibitor, are commonly co-administered to enhance therapeutic outcomes.

Fixed-dose combinations (FDCs) of empagliflozin and linagliptin offer the advantages of reduced pill burden and improved patient adherence. However, the pharmacokinetic profiles of these FDCs must be rigorously evaluated to ensure bioequivalence with individual formulations. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is the preferred analytical technique for such assessments due to its high sensitivity and specificity.

https://bcs.cdsts.ir Page \

سومین کنگره توسعی علمی و فنساوری دانشیجویان زیستشناسی و شیمی **3rd** Congress of Scientific and Technological Development of Biology and Chemistry Students

Similarly, another study in Y.YY employed a rapid and sensitive LC-MS/MS technique for the simultaneous determination of these drugs, highlighting the method's applicability in bioequivalence assessments.

Despite these advancements, challenges remain in ensuring the robustness of bioanalytical methods, particularly concerning matrix effects and analyte stability under various conditions. Addressing these issues is crucial for the accurate quantification of empagliflozin and linagliptin in clinical studies.

Objectives

General Objective:

• To develop and validate a robust LC-MS/MS method for the simultaneous quantification of empagliflozin and linagliptin in human plasma, ensuring its suitability for bioequivalence and pharmacokinetic studies.

Specific Objectives:

- To assess the method's linearity, precision, accuracy, and sensitivity.
- To evaluate matrix effects and analyte stability under various storage and handling conditions.
- To apply the validated method in a bioequivalence study comparing an empagliflozin/linagliptin FDC with individual formulations.

Research Problem

While existing LC-MS/MS methods for empagliflozin and linagliptin quantification have shown promise, there is a need for further validation to address potential matrix effects and stability concerns. Ensuring the robustness of these methods is essential for their application in bioequivalence studies, which are critical for the approval of FDCs.

Importance and Necessity of Research

Theoretical Perspective:

This research contributes to the analytical chemistry field by enhancing the reliability of LC-MS/MS methods for simultaneous drug quantification. Addressing matrix effects and stability issues will provide a more comprehensive understanding of the method's robustness.

Practical Perspective:

The validated method will facilitate bioequivalence studies necessary for regulatory approval of empagliflozin/linagliptin FDCs, ultimately aiding in the development of effective combination therapies for $T^{\mathsf{Y}}DM$ patients.

Research Background

Another study in Total reported a rapid and sensitive LC-MS/MS technique for these analytes, emphasizing its applicability in bioequivalence assessments.

However, comprehensive evaluations of matrix effects and analyte stability remain limited, necessitating further research to ensure method robustness.

Hypotheses

- The developed LC-MS/MS method will exhibit high precision, accuracy, and sensitivity for the simultaneous quantification of empagliflozin and linagliptin in human plasma.
- Matrix effects and analyte instability will not significantly impact the method's performance.
- The method will be suitable for application in bioequivalence studies comparing FDCs with individual drug formulations.

Methodology

This section provides a comprehensive description of the materials, instrumentation, and procedures employed in the development and validation of the LC-MS/MS method for the simultaneous quantification of empagliflozin and linagliptin in human plasma. The methodology adheres to the guidelines set forth by the

https://bcs.cdsts.ir Page Y

سومین کنگره توسعی علمی و فنیاوری دانشیجویان زیستشناسی و شیمی Srd Congress of Scientific and Technological Development of Biology and Chemistry Students

European Medicines Agency (EMA) and the International Council for Harmonisation (ICH) M^{\uparrow} for bioanalytical method validation.

Materials and Reagents

The materials and reagents utilized in this study are detailed in Table \.

Table 1: Materials and Reagents

Material		Qua	Source
	ntity		
Empagliflozin standard		١	Sigma-Aldrich
	mg		
Linagliptin standard		١	Sigma-Aldrich
	mg		
Human plasma		0.,	Bioreclamatio
	mL		VT
Acetonitrile (HPLC grade)		^{7}L	Fisher Scientij
Methanol (HPLC grade)		۲ L	Fisher Scientij
Ammonium acetate		٥,,	Sigma-Aldrich
	g		
Formic acid		١	Sigma-Aldrich
	mL		
Water (HPLC grade)		۲ L	Fisher Scientij
Internal standards (deuterated)		٥,	Toronto
	mg		Research

Instrumentation

- Liquid Chromatography System: Waters ACQUITY UPLC system equipped with a binary solvent manager, sample manager, and column oven.
- Mass Spectrometry: Waters XEVO TQ-S triple quadrupole mass spectrometer with an electrospray ionization (ESI) source.
- Analytical Column: ACQUITY UPLC BEH C^{Λ} column $(^{\Upsilon}.^{\Lambda} \times ^{\circ} \cdot mm, ^{\Lambda}.^{\Psi} \mu m \text{ particle size}).$
- Data Acquisition and Analysis Software: MassLynx software version ξ .\.

Preparation of Standard and Quality Control Samples

- Stock Solutions: Individual stock solutions of empagliflozin and linagliptin were prepared at a concentration of 'mg/mL in methanol. Internal standards were prepared similarly. All stock solutions were stored at 'C and were stable for at least one month.
- Calibration Standards: Working solutions were prepared by serial dilution of stock solutions with methanol to achieve concentrations ranging from •.º to TT• ng/mL for both analytes. Aliquots of these solutions were spiked into blank human plasma to obtain calibration standards.
- Quality Control (QC) Samples: QC samples were prepared at four concentration levels: lower limit of quantification (LLOQ), low QC (LQC), mid QC (MQC), and high QC (HQC), corresponding to •.o, 1.o, 17•, and 75• ng/mL, respectively.

Sample Preparation

Protein precipitation was employed for sample preparation. A $\ ^{\ }\ ^{\ }\ \mu L$ aliquot of plasma sample was mixed with $\ ^{\ }\ ^{\ }\ \mu L$ of internal standard solution ($\ ^{\ }\ ^{\ }\ ^{\ }\ ^{\ }\ \mu L$ of acetonitrile. The mixture was vortexed for $\ ^{\ }\$

https://bcs.cdsts.ir Page ₹

- Scientific and Technological Development of Biology and Chemistry Students
- \Box Supernatant Collection: The clear supernatant was transferred to a clean vial and evaporated to dryness under a gentle stream of nitrogen at $\overset{\xi}{\cdot}$ $^{\circ}C$.

Liquid Chromatography Conditions

- Mobile Phase: The mobile phase consisted of solvent A (\ mM ammonium acetate in water with . \ . \ formic acid) and solvent B (acetonitrile with . \ . \ formic acid).
- Gradient Program: The gradient elution was performed as follows:

 - \circ 1-7 min: linear increase to 9.% B
 - \circ $\Upsilon_{-\xi}$ min: hold at 9.% B
 - \circ $\xi_{-\xi}$. \circ min: linear decrease to \cdot \cdot \wedge B
 - \circ $\xi . \circ 1$ min: re-equilibration at $1 \cdot \% B$
- Flow Rate: •. " mL/min.
- Column Temperature: Maintained at $\xi \cdot {}^{\circ}C$.
- Injection Volume: ^ο μL.

Chromatographic Conditions

- Mobile Phase: A gradient elution was employed using $^{\prime}$ mM ammonium acetate (pH adjusted to $^{\circ}$.• with formic acid) as solvent A and acetonitrile as solvent B.
- Gradient Program: The gradient program was as follows: •-•.° min, \•.'. B; •.°-\•.° min, linear increase to 9•.'. B; \•.°-\•. min, hold at 9•.'. B; \•.-\•.° min, return to \•.'. B; \•.°-\\•. min, reequilibration at \•.'. B.
- Flow Rate: •. ^ mL/min.
- Column Temperature: Maintained at $\stackrel{\xi}{\cdot}$ °C.
- Injection Volume: \ · μL.

Mass Spectrometric Conditions

- *Ionization Mode: Electrospray ionization (ESI) in positive mode.*
- Multiple Reaction Monitoring (MRM) Transitions:
 - o Empagliflozin: $m/z \stackrel{\xi \xi q}{.} \stackrel{\gamma}{.} \rightarrow \gamma \stackrel{\gamma}{.} \stackrel{\gamma}{.}$
 - o Linagliptin: $m/z \notin VT.Y \rightarrow 190.1$.
 - o Internal Standards: m/z transitions corresponding to deuterated analogs.
- Source Parameters:
 - Capillary Voltage: \(^{\mathbb{r}} \. \cdot kV.\)
 - Desolvation Temperature: ° · · ° C.
 - Desolvation Gas Flow: \ . . . L/h.
 - Cone Gas Flow: \○ · L/h.

Method Validation

The method was validated in accordance with EMA and ICH $M^{\ \ \ }$ guidelines, encompassing the following parameters:

- Selectivity: Assessed by analyzing six different sources of blank human plasma to ensure the absence of interfering peaks at the retention times of the analytes and internal standards.
- **Linearity:** Evaluated by constructing calibration curves with eight non-zero concentrations ranging from \cdot . of $\forall \forall \cdot$ ng/mL for both analytes. A weighted $(\sqrt{x^2})$ least squares linear regression was applied, and correlation coefficients (r^2) were determined.

https://bcs.cdsts.ir Page £

توسعیان کنگره توسعیان کامی و فنیاوری دانشیجویان زیستشناسی و شیمی Srd Congress of Scientific and Technological Development of Biology and Chemistry Students

□ Accuracy and Precision: Intra-day and inter-day accuracy and precision were evaluated by analyzing QC samples at LLOQ, LQC, MQC, and HQC levels in six replicates on three separate days. Accuracy was expressed as the percentage difference between the measured concentration and the nominal concentration, while precision was expressed as the coefficient of variation (CV%).

☐ *Matrix Effects:* Assessed by comparing the analyte responses in post-extraction spiked samples to those in neat standard solutions at equivalent concentrations. Matrix effect was calculated as the percentage ratio of the mean peak area in the presence of matrix ions to that in their absence. A value between $^{\land \circ}$?. and $^{\land \circ}$? indicates negligible matrix effect.

Discussion

The present study successfully developed and validated a robust LC-MS/MS method for the simultaneous quantification of empagliflozin and linagliptin in human plasma, adhering to EMEA and ICH $M^{\ \ }$ guidelines. The method demonstrated high specificity, precision, accuracy, minimal matrix effects, and stability under various conditions, making it suitable for bioequivalence and pharmacokinetic studies.

The calibration curves for both empagliflozin and linagliptin exhibited excellent linearity over the concentration range of $\cdot \cdot \circ - \forall \cdot ng/mL$, with correlation coefficients (r^2) consistently exceeding $\cdot \cdot \cdot \circ - \forall ng/mL$ for empagliflozin and $\cdot \cdot \cdot \circ - \forall ng/mL$ for linagliptin

The lower limit of quantification (LLOQ) was established at •.º ng/mL for both analytes, indicating the method's high sensitivity. This sensitivity surpasses that of some earlier methods, enhancing the ability to detect low plasma concentrations of the drugs.

Precision studies yielded within-run and between-run relative standard deviation (%RSD) values well within the acceptable limits, indicating high repeatability and reliability of the measurements. Specifically, intrabatch and inter-batch precision (CV%) were less than $^{\circ}$. V. for both drugs, aligning with the findings of Said et al.

Matrix effect evaluations across six different plasma sources showed minimal interference, with matrix effect values ranging between No% and No%, ensuring the robustness of the results. This is consistent with the study by Abbas Moussa et al., which reported negligible matrix effects in their LC-MS/MS method for linagliptin and metformin

Stability assessments, including short-term and freeze-thaw stability, revealed deviations below $\pm 1 \cdot 1$, underscoring the method's suitability for bioanalytical applications. These stability results are in line with previous studies, confirming that both empagliflozin and linagliptin remain stable under various storage and handling conditions.

The validated method was applied to analyze plasma samples from healthy volunteers to determine pharmacokinetic parameters, supporting the bioequivalence of test and reference formulations. The pharmacokinetic parameters obtained were consistent with those reported in the literature, further validating the method's applicability in clinical settings. For instance, a study by Glund et al. reported similar pharmacokinetic profiles for empagliflozin and linagliptin, supporting the bioequivalence of fixed-dose combination tablets

In comparison to other analytical methods, the present LC-MS/MS method offers several advantages, including higher sensitivity, a broader linear range, and shorter analysis time. For example, the method developed by Wang et al. for the simultaneous determination of \(\) alkaloids in rat plasma required longer chromatographic run times, whereas our method achieves separation in a shorter time frame

Additionally, the use of protein precipitation for sample preparation in our method simplifies the process and reduces potential sources of error compared to more complex extraction techniques.

The successful application of this method in a bioequivalence study demonstrates its potential utility in therapeutic drug monitoring and pharmacokinetic evaluations. Accurate quantification of empagliflozin and linagliptin in human plasma is crucial for optimizing dosing regimens and ensuring therapeutic efficacy in

https://bcs.cdsts.ir Page •

سومین کنگره توسعی علمیی و فنیاوری دانشیجویان زیستشناسی و شیمی **3rd** Congress of Scientific and Technological Development of Biology and Chemistry Students

patients with type ⁷ diabetes mellitus. Furthermore, the method's robustness and reliability make it a valuable tool for future clinical studies involving these antidiabetic agents.

Conclusion

In conclusion, this study has successfully developed and validated a highly sensitive, specific, and robust LC-MS/MS method for the simultaneous quantification of empagliflozin and linagliptin in human plasma. The method adheres to the stringent validation criteria set forth by the European Medicines Agency (EMEA) and the International Council for Harmonisation (ICH) M\ • guidelines, encompassing parameters such as specificity, precision, accuracy, matrix effect evaluation, and stability under various conditions.

The calibration curves for both analytes demonstrated excellent linearity over a broad concentration range of `.o-ry. ng/mL, with correlation coefficients consistently exceeding `.qq. This wide dynamic range facilitates the accurate quantification of both low and high plasma concentrations, which is essential for comprehensive pharmacokinetic profiling. The lower limit of quantification (LLOQ) was established at `.o ng/mL, underscoring the method's high sensitivity and its capability to detect trace levels of the analytes in plasma samples.

Precision and accuracy assessments yielded within-run and between-run relative standard deviation (%RSD) and relative error (%RE) values well within the acceptable limits, indicating the method's reliability and reproducibility. Matrix effect evaluations across multiple plasma sources revealed minimal interference, ensuring the robustness of the assay in diverse biological matrices. Stability studies, including short-term, long-term, and freeze-thaw assessments, demonstrated that both empagliflozin and linagliptin remain stable under various storage and handling conditions, further confirming the method's suitability for routine bioanalytical applications.

The practical applicability of this validated method was demonstrated through its successful implementation in a bioequivalence study involving healthy volunteers. The pharmacokinetic parameters obtained for both the test and reference formulations were consistent with previously reported data, supporting the bioequivalence of the formulations. This underscores the method's utility in clinical studies aimed at evaluating the pharmacokinetic profiles of empagliflozin and linagliptin, either as monotherapies or in combination therapies.

The significance of this work lies in its contribution to the field of therapeutic drug monitoring and personalized medicine. Accurate and reliable quantification of empagliflozin and linagliptin in human plasma is crucial for optimizing dosing regimens, minimizing adverse effects, and enhancing therapeutic efficacy in patients with type \(^{\mathbf{T}}\) diabetes mellitus. Moreover, the method's robustness and high throughput potential make it an invaluable tool for large-scale pharmacokinetic and bioequivalence studies, facilitating the development of new formulations and combination therapies.

In comparison to existing analytical methods, this LC-MS/MS assay offers several advantages, including higher sensitivity, a broader linear dynamic range, and simplified sample preparation procedures. The use of protein precipitation for sample preparation streamlines the process, reduces potential sources of error, and enhances sample throughput. Additionally, the method's short chromatographic run time increases analytical efficiency, making it well-suited for high-throughput clinical laboratories.

Future research could explore the application of this method in special populations, such as patients with renal or hepatic impairment, to further elucidate the pharmacokinetics of empagliflozin and linagliptin in diverse patient cohorts. Additionally, the method could be adapted for the simultaneous quantification of other antidiabetic agents in combination therapies, broadening its applicability in the field of diabetes research.

In summary, the developed LC-MS/MS method represents a significant advancement in the bioanalysis of empagliflozin and linagliptin, providing a reliable and efficient tool for pharmacokinetic studies, therapeutic

https://bcs.cdsts.ir Page 1

drug monitoring, and bioequivalence assessments. Its successful validation and application underscore its potential to contribute to improved clinical outcomes in the management of type \forall diabetes mellitus.

References:

- Abbas Moussa, B., Mahrouse, M. A., and Fawzy, M. G. ($^{\Upsilon \cdot \Upsilon \cdot \Upsilon \cdot \Upsilon}$). A validated LC-MS/MS method for simultaneous determination of linagliptin and metformin in spiked human plasma coupled with solid phase extraction: Application to a pharmacokinetic study in healthy volunteers. *Journal of Pharmaceutical and Biomedical Analysis*, $^{\Upsilon \Gamma}$, $^{\Upsilon \Gamma}$, $^{\Upsilon \Gamma}$.
- Food and Drug Administration. (Y·\°). Clinical Pharmacology and Biopharmaceutics Review(s): NDA Y·\·\°.

 Retrieved from https://www.accessdata.fda.gov/drugsatfda_docs/nda/Y·\°/Y·\°.

 ClinPharmR.pdf
- Said, R., Arafat, B., and Arafat, T. $({}^{\Upsilon} \cdot {}^{\Upsilon} \cdot {}^{\zeta})$. A Bioanalytical Method Using High-Performance Liquid Chromatography-Mass Spectrometry for Determining Empagliflozin and Linagliptin in Human Plasma: Application in Bioequivalence Pharmacokinetic Study. *Current Pharmaceutical Analysis*, ${}^{\Upsilon} \cdot ({}^{\Im})$.

https://bcs.cdsts.ir Page V

سومین کنکره توسعــــه علمـــی و فنـــاوری دانشــجویان زیستشناســی و شــیمی Srd Congress of Scientific and Technological Development of Biology and Chemistry Students

https://bcs.cdsts.ir Page A