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ABSTRACT 

The increasing need for sustainable energy solutions has driven the development of photocatalytic 

materials with tailored band gap properties. In this study, a Random Forest Regressor model was developed 

to predict the band gap of materials incorporating carbon and nitrogen. The model utilized a dataset 

comprising 3626 materials with features such as density, energy above the hull, magnetic ordering, and 

structural parameters, with data sourced from Materials Project. The predictive performance of the model was 

evaluated using metrics including MAE = 0.450 eV, RMSE = 0.677 eV, and a R² = 0.813, indicating strong 

predictive capability. Feature importance analysis revealed that magnetic ordering and density were the most 

influential factors, contributing 22% and 16.9%, respectively, to band gap predictions. A correlation heatmap 

further highlighted the relationships among material properties, with density showing a strong negative 

correlation (-0.98) with band gap values. The findings demonstrate the effectiveness of machine learning in 

accurately predicting band gaps, overcoming the limitations of traditional computational methods, and 

enabling the rapid identification of promising photocatalysts. This approach significantly accelerates the 

discovery of materials for applications in water splitting, CO₂ reduction, and environmental remediation, 

supporting the transition to sustainable energy solutions. 
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1. INTRODUCTION 

     The demand for efficient and sustainable energy solutions has intensified the search for advanced 

photocatalytic materials capable of harnessing solar energy for applications such as water splitting [1], 

carbon dioxide reduction [2], and environmental remediation [3]. Photocatalysts, particularly those with 

tunable band gaps, are central to this endeavor as they enable the absorption of light and the generation of 

electron-hole pairs essential for driving chemical reactions [4] to  6]. While a broad range of materials, 

including oxides [7], nitrides [8], and carbon-based compounds [9], have been explored, the development of 

hybrid systems combining multiple material types has emerged as a powerful strategy to overcome the 

limitations of single-component photocatalysts [10]. 

      The energy gap of a semiconductor, known as the band gap, defines the energy required to move an 

electron from the valence band to the conduction band. Accurately measuring this energy is vital for 

understanding and predicting the photophysical and photochemical behaviors of semiconductors. This value 

is particularly important in discussions surrounding the photocatalytic capabilities of these materials [11]. 
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      Carbon- and nitrogen-containing compounds have garnered significant interest due to their unique 

electronic and structural properties, offering opportunities for tailoring band gap energies to match specific 

photocatalytic applications. These materials, often inspired by their natural abundance and environmental 

compatibility, provide a versatile platform for designing next-generation photocatalysts [11] [12]. 

Researchers have focused on modifying their chemical composition, nanostructures, and defect states to 

achieve optimal light absorption and catalytic performance, thereby opening pathways for more efficient 

solar-driven reactions [13] to [15]. 

      Determining the properties of these materials through experimental or computational approaches can be 

a lengthy process. However, the development of faster computing capabilities has enabled the use of density-

functional-theory-based (DFT) methods to efficiently calculate band gaps within a practical timeframe [16] 

to [17]. Despite this, fundamental gaps derived using the local-density or generalized-gradient 

approximations (LDA or GGA) tend to be underestimated. To address this, the GW method, which is based 

on many-body perturbation theory [18], can provide more accurate band gap estimations. Unfortunately, 

such approaches are computationally intensive and often too costly for practical application [16]. Recently, 

statistical learning has gained traction as a valuable tool for predicting the structures [19] and properties 

[20] to [23] of various material classes. These techniques can effectively estimate properties like 

paramagnetic or ferromagnetic behavior [24] to [25], density of states [26], band gaps [27], toxicity [28], 

light absorption [29], and drug loading capacity [30] within feasible timeframes [16].  

       To address these challenges, machine learning (ML) has emerged as a powerful tool, offering rapid and 

accurate predictions based on material properties. By leveraging datasets of known materials and their band 

gaps, ML models can identify patterns and relationships that are not readily apparent through conventional 

methods [31]. 

       In this study, we develop a Random Forest Regressor model to predict the band gap of photocatalysts 

containing carbon, nitrogen, and potential metallic components. The model is trained on a dataset 

incorporating various physicochemical and structural features of these materials, aiming to evaluate the 

influence of metallic inclusions on band gap predictions. Additionally, we employ advanced visualization 

techniques to interpret the results and uncover the contributions of different material properties. 

This work aims to demonstrate the feasibility and effectiveness of ML-driven approaches in accelerating 

the discovery and design of novel photocatalysts, particularly those with complex compositions containg 

carbon and nitrogen. By reducing the reliance on experimental and computationally expensive methods, this 

study contributes to the broader effort of advancing sustainable technologies for energy and environmental 

applications. 

2.         MATHEMATICAL BACKGROUND 

      To assess the predictive performance of each model on the test dataset, we utilized several metrics: Mean 

Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Explained 

Variance (R²) [32]. 

      In statistics, the MAE quantifies the average magnitude of errors between paired observations that 

represent the same phenomenon. It provides a straightforward measure of prediction accuracy by averaging 

the absolute differences between predicted and actual values [33].  

 𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑥𝑖|
𝑛
𝑖=1   (1) 

      where yi is the prediction and xi the true value and N is the total number of data points. In statistics, the 

MSE, is a metric used to evaluate an estimator's performance. It represents the average of the squared 

differences between estimated values and the actual values, providing insight into the accuracy of predictions 

or estimates [34] to [35]. 
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 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦 𝑖)2𝑛
𝑖=1      (2) 

      In this context, yi represents the i-th observed value, while ŷi refers to the corresponding predicted value. 

Additionally, n denotes the total number of observations in the dataset. 

     The RMSE is the square root of the mean of the squared differences between observed and predicted 

values. These differences are termed residuals when calculated on the data sample used for estimation, as 

they reference the model's estimates. When computed on out-of-sample data (i.e., the full dataset compared 

to true values rather than estimates), they are referred to as errors or prediction errors. [36]. 

 RMSE=√𝑀𝑆𝐸                      (3) 

      In statistics, the coefficient of determination, commonly symbolized as R2, indicates the percentage of 

variability in the dependent variable that can be accounted for by the independent variable(s). It serves as a 

measure of how well the model explains the observed data [37]. 

 𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
     (4) 

      Where R² represents the coefficient of determination. RSS stands for the sum of squares of residuals. TSS 

refers to the total sum of squares. 

3.  RANDOM FOREST REGRESSOR MODEL 

      Based on the previous work by Priyanga et al [38], it was found that the Random Forest model 

outperformed other models in this type of prediction, achieving an accuracy percentage of 91%. 

      Random Forest is an ensemble method introduced by Breiman in 2001[39], which consists of multiple 

decision trees. As suggested by its name, the construction of a random forest is done in a random manner. It 

is built from numerous decision trees that are uncorrelated with one another. The method employs random 

sampling with replacement, which involves two key processes: data random sampling and feature random 

sampling. In data random sampling, random subsets are selected from the dataset, while in feature random 

sampling, a random selection of features is made from the available set. Importantly, no pruning is applied 

to the individual trees, allowing each tree to grow freely. Random Forest is versatile, capable of addressing 

both classification and regression problems. In classification tasks, the final output is determined by a 

majority vote from all the trees, while in regression tasks, the result is the average of the predictions from all 

the trees [40]. 

4.  SETTING UP THE ENVIRONMENT 

      The main libraries used in the code are pandas, numpy, sklearn, matplotlib, and seaborn. Pandas is used 

for data manipulation and analysis, offering powerful tools for handling data frames, cleaning, and 

transforming data [41].  

      Numpy is essential for numerical computing, providing support for large, multi-dimensional arrays and 

matrices, along with a collection of mathematical functions [42].  

      Scikit-learn (sklearn) is a machine learning library that offers a wide range of algorithms for data 

modeling, preprocessing, and evaluation, including models for regression, classification, and clustering [42].  
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      Matplotlib and Seaborn are visualization libraries; Matplotlib is used for creating static, animated, and 

interactive plots, while Seaborn builds on Matplotlib to provide more aesthetically pleasing and complex 

visualizations, particularly for statistical data [43]. 

5.  MODEL EVALUATION 

5.1 Actual vs. Predicted Band Gap 

      The actual vs. predicted chart illustrates the relationship between the actual band gap values and the 

predicted band gap values generated by the model  [44]. The points on the chart represent photocatalytic 

material compositions as predicted by the model. The  line represents the ideal prediction, where the 

predicted values perfectly match the actual values [44]. 

     As shown in Figure 1a, most points lie close to the red line, especially within the range of medium band 

gaps. This indicates that the model performs well in predicting mid-range values. At very small or very large 

ranges (both ends of the x and y axes), some points deviate more significantly from the red line, indicating 

higher errors in these intervals. 

      In the small band gap domain (band gap <1 eV), there is slightly greater scatter among the points. This 

suggests that the model faces challenges in accurately predicting compositions with small band gaps. In the 

large band gap domain (band gap > 4 eV), there are fewer data points in this range, and some points exhibit 

relatively high errors. This may be due to a lack of sufficient training data for this domain. 

      In some cases, particularly in higher ranges, the model tends to underestimate the predicted values 

compared to the actual ones. This type of error could stem from improper data normalization or insufficient 

diversity in the features. 

5.2. Residual distribution 

      This chart illustrates the distribution of residuals, which are the differences between the actual values 

and the predicted values by the model. The residual distribution is approximately symmetric, indicating that 

the model generally has balanced errors for higher and lower values (Figure 1b). This behavior suggests 

that the model does not exhibit systematic bias in predicting the band gap. The mean of the residuals is close 

to zero, confirming that the model’s positive and negative errors tend to cancel each other out on average. 

Toward the tails of the distribution, there is slight skewness toward positive values, indicating that the model 

occasionally underestimates the actual values. Some residuals fall within very high or very low ranges, 

suggesting that the model has high errors for certain specific combinations, which could be due to excessive 

complexity in these combinations or insufficient information. 

Fig. 1.  a) Actual vs. predicted plot.and b) residual distribution plot. 

 

6.  DATA INSIGHTS AND FEATURE ANALYSIS 

 

6.1 Feature importance 

(a) (b

) 
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      This chart illustrates the relative importance of each feature in predicting the Band Gap value, calculated 

using the Random Forest model. As shown in Figure 2a Magnetic ordering_NM was identified as the most 

significant feature, contributing 22% to the prediction, indicating that the magnetic properties of materials 

directly influence their electronic behavior and band structure. 

      The second and third most important features are Density and Energy Above Hull, accounting for 16.9% 

and 16.3% of the importance, respectively. Density, as a key structural parameter, reflects atomic packing and 

its impact on the material's electron affinity. Meanwhile, Energy Above Hull represents the material's 

thermodynamic stability, playing a critical role in determining phase stability and semiconductor behavior. 

      Other features, such as Formation Energy, Volume, and Space Group Number, have moderate effects and 

serve as complementary factors in predicting the Band Gap. Table 1 summarizes a portion of this datas. 

      These findings highlight that the magnetic and structural properties of materials, particularly atomic 

density and phase stability, have significant impacts on predicting their semiconductor characteristics. This 

information can be instrumental in designing new materials and optimizing electronic properties for specific 

applications, such as solar cells [45] or electronic components [46]. 

Table 1. A summarize of feature importance datas 

Feature Importance 

Magnetic Ordering_NM 0.225554 

Density 0.169101 

Energy Above Hull 0.163208 

Formation Energy 0.105137 

Total Megnetization 0.046802 

 

6.2 Distribution of Band gap 

      The data indicate that most materials have a Band Gap in the range of 1 to 3 eV. This range is typically 

associated with semiconductors that have widespread applications in photocatalysts [47], photovoltaics 

[48], and ultra-sensitivit sensors [49]. 

      The concentration of data in this range suggests that the dataset is well-targeted for photocatalytic 

applications (Figure 2b). 

      The presence of materials with high Band Gaps (>3 eV) indicates the existence of strong insulators [50]. 

These materials can be useful for applications such as energy storage [51] or the fabrication of specialized 

electronic devices [52]. 

      Materials with Band Gaps below 1 eV are likely metals or semimetals that are suitable for applications in 

solar cells [53] or sensing [54]. 

      The number of materials with very small (<1 eV) or very large (>4 eV) Band Gaps is relatively low. This 

imbalance could affect the model's performance in predicting these extreme values. 

      The mean Band Gap is 2.67 eV with a standard deviation of 1.58 eV, indicating significant diversity in the 

dataset, although most data points are concentrated around the mean. 

     Approximately 50% of the data lies within the range of 1.47 eV to 3.79 eV, encompassing many materials 

with Band Gaps in this range. 
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     There are data points that significantly deviate from the main distribution. These outliers may correspond 

to unusual materials or measurement errors. 

Fig2. a) Feature importance plot, b) distribution of band gap plot and c) heatmap plot 

 

6.3 Heatmap 

      The correlation heatmap illustrates the significant relationships among various properties and the band 

gap, calculated using the Pearson Correlation Coefficient [55]. The correlation coefficient r for two random 

variables X and Y is defined as: 

 𝑟 =
𝐸(𝑋𝑌)−𝐸(𝑋)𝐸(𝑌)

√𝐸(𝑋2)−𝐸(𝑋)2•√𝐸(𝑋2)−𝐸(𝑋)2
               (5) 

        where E is the expected value operator. Some properties, such as Energy Above Hull and Density, exhibit 

a negative correlation with the band gap, meaning that an increase in these properties leads to a decrease in 

the band gap (Figure 2c). In contrast, properties like Elastic Anisotropy show a positive correlation with the 

band gap, indicating that a reduction in these properties is associated with a decrease in the band gap. 

Properties such as the Ionic Dielectric Constant exhibit a weak correlation with the band gap, suggesting they 

do not play a direct role in determining its value. 

      The correlation between Density and the Band Gap, at a value of -0.98, represents a very strong and 

negative relationship between these two variables. In other words, this implies that as the density of the 

material increases, the band gap significantly decreases. Additionally, Density shows a strong positive 

(a) (b) 

(c) 
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correlation with the Total Dielectric Constant (+0.98), underscoring the critical role of density in determining 

the electronic and structural properties of materials. On the other hand, Volume has a positive correlation 

with the band gap (+0.88), indicating that an increase in the material's volume generally results in an increase 

in the band gap. 

      Certain properties, such as the Ionic Dielectric Constant, have a limited impact on the band gap 

(correlation coefficient of -0.04) and may be less significant in subsequent modeling stages. 

      Overall, this analysis sheds light on the physical and chemical relationships between material structure 

and the band gap, highlighting that properties such as Density and Energy Above Hull have a substantial 

impact on the band gap. This information can be particularly useful in designing new materials, especially 

photocatalytic materials. 

7.  PERFORMANCE OF THE MODEL IN PREDICTING BAND GAP  

 

      The Random Forest model achieved a coefficient of determination, explaining over 81% of the variance 

in the band gap data, which indicates a very good performance. 

The MAE = 0.450, MSE = 0.458, and RMSE = 0.677 demonstrate the model's acceptable accuracy in 

predicting band gap values. 

 

      Analysis of the residuals shows that the model's errors are generally normally distributed, with a mean 

close to zero, indicating no systematic bias in the model. However, deviations are observed in very small 

(band gap < 1 eV) and very large (bsnd gsp > 4 eV) band gap values, highlighting the challenges the model 

faces in predicting these ranges.  

 

      Adding more data for materials with unusual band gap values can improve the balance of the dataset and 

enhance the model's performance. Additionally, a detailed examination of materials with outliers in band gap 

values could help eliminate unreliable data or identify new and unique compounds. 

 
 

8.  CONCLUSION 

      This study used a Random Forest Regressor to predict band gaps of carbon and nitrogen-based 

photocatalysts with high accuracy (R² = 0.813, MAE = 0.450 eV). Magnetic ordering (22%) and density 

(16.9%) were the most significant features. The actual vs. predicted plot showed most points closely aligning 

with the ideal line, though deviations were noted for extreme band gap values. Residual distribution plots 

revealed balanced errors with a slight skew toward underestimations in higher ranges. Feature importance 

analysis highlighted magnetic ordering and density as key factors, supported by the strong negative 

correlation (-0.98) between density and band gap in the heatmap. The band gap distribution plot showed 

most materials falling between 1 and 3 eV, suitable for photocatalytic applications, while outliers indicated 

dataset imbalances. The study confirms the high effectiveness of the Random Forest Regressor in accurately 

predicting band gaps of carbon and nitrogen-based photocatalysts, showcasing its potential to revolutionize 

material design and accelerate the development of efficient, sustainable energy solutions. 

 

Data and code availability 

      The predicted materials data from the Materials Project database, along with the codes developed in this 

study, can be accessed at https://github.com/PouyaPishkar/BandGap.git 
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