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ABSTRACT 

In the modern age of swift technological advancement, smart meters have become a fundamental element 

of smart grid infrastructures, serving a critical role in acquiring energy data and delivering advanced services. 

These devices provide essential insights into energy consumption patterns, enabling more efficient energy 

management, cost reduction, and enhanced grid stability. Among the various applications of smart meter data, 

short-term load forecasting (STLF) for smart homes is notably crucial. However, the increasing deployment 

of smart meters and the vast amounts of data they generate pose considerable challenges regarding to storage, 

processing, transmission, and data security. To address these issues, edge computing, data compression, and 

encryption have emerged as transformative technologies, offered practical solutions and enhancing  the 

effectiveness of load forecasting systems.  
This paper presents a novel framework leveraging Multi-Layer Edge Computing (MLEC) for load 

forecasting, data compression, and encryption to address the challenges of decentralized energy management. 

By processing energy data locally, the framework enhances real-time decision-making, minimizes dependency 

on cloud platforms, and secures user privacy. The proposed framework optimizes and simplifies short-term 

load forecasting by achieving high accuracy while maintaining computational simplicity across various 

scenarios. It enhances data management through efficient compression, balancing compression ratios with 

processing speed and energy efficiency, and ensures secure data transmission with minimal overhead via 

secondary encryption. Simulations demonstrate prediction accuracy within an acceptable range, a 20-25% 

reduction in data size, and low-latency performance, highlighting the framework’s scalability and effectiveness 

for decentralized smart grids. 

 

Keywords: Load Forecasting, Multi-Layer Edge Computing, Data Compression, Encryption, Internet of 

things, Smart Meter 

 

 

1. INTRODUCTION 

 

In recent years, driven by population growth, advancements in digital technologies, and the emergence of 

Industry 4.0, the rapid growth in energy demand has highlighted the need for efficient management and the 

transformation of traditional energy infrastructures into smart grids. As one of the key elements of smart grids, 

smart meters serve as the backbone of communication, facilitating two-way interactions between end-users 

and power systems. These devices consistently track energy consumption over various time horizons, such as 

real-time and semi-real-time, and transmit the collected data to the relevant servers. This data is a critical 

input for various applications, including load forecasting, dynamic pricing strategies, identifying unauthorized 

consumption, detecting energy theft, customer segmentation, and providing personalized energy services. 

Over the past decade, the integration of smart meters with modern power systems has revolutionized energy 

management and paved the way for the carrying out initiatives such as active consumers. However, the 

exponential growth in the volume of data generated by smart meters has introduced significant challenges. 
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These challenges can be categorized into issues related to the required infrastructure for data storage, 

processing, and transmission. While the vast amount of data is crucial for improving the accuracy of studies 

and facilitating better decision-making, it also significantly increases the risks of cybersecurity threats and 

privacy breaches. Ensuring the secure transmission and storage of this data, while enabling precise and 

efficient analysis, has become a top priority for the effective utilization of smart grid infrastructures. To balance 

the need for precise data analysis with robust cybersecurity, many solutions such as edge computing, data 

compression, and strong encryption protocols have been proposed. These advancements are important to 

addressing the dual challenge of managing the vast volume of energy data and safeguarding user 

confidentiality in the era of digital energy systems. Accurate load forecasting(LF), particularly for short-term 

periods(from minutes to hours), is an important factor in enhancing power grid operation. Such forecasts 

enable grid operators to precisely determine the exact required amount of energy to maintain a balance 

between supply and demand and control the frequency of power grid. Preventing peak load conditions, which 

can lead to regional blackouts, is another benefit of accurate forecasting. Additionally, these processes reduce 

unnecessary costs associated with overproduction or the emergency use of storage resources, thus enhancing 

the grid’s economic efficiency. However, achieving high levels of accuracy in energy demand forecasting poses 

several challenges. 

All existing approaches, like machine learning [1], [2], [3] , deep learning [4], [5] and time-series [6], [7] 

models, require substantial amounts of data and computational resources. The processing and analysis of such 

data often needs significant processing power and memory. Furthermore, while cloud-based platforms offer 

high computational capabilities, they are often costly and involve longer times for data transmission and 

computation. These limitations make it difficult to meet the real-time requirements of grid operators for short-

term energy demand predictions. To address these challenges, edge computing has emerged as an efficient 

alternative to cloud-based models. By processing data closer to the source, edge computing reduces processing 

times and minimizes the costs of data transmission and cloud resources. Combined with data compression and 

encryption algorithms, this technology can provide a comprehensive solution for real-time, secure energy 

demand forecasting . 
This paper proposes a novel framework based on Multi-Layer Edge Computing (MLEC) to address these 

challenges. The proposed framework not only reduces data volume and enhances the security of data 

transmission but also enables complete load forecasting computations at the edge level. This approach 

minimizes dependency on cloud platforms, facilitates real-time data analysis, and effectively preserves user 

privacy.   One of the key applications of this framework lies in energy management for smart homes. In smart 

homes, accurate load forecasting allows system operators to allocate energy resources more efficiently. For 

instance, STLF enables the scheduling of household appliances during periods of low electricity costs, 

preventing load fluctuations during peak hours. This capability significantly reduces household energy 

expenses and improves the overall efficiency of the power grid. Additionally, by reducing the volume of data 

transmitted to central servers and securely encrypting it, the security and resilience of smart home systems are 

enhanced. Furthermore, by processing data locally and minimizing latency, this framework enables real-time 

execution of energy monitoring and control systems. Moreover, the use of MLEC framework facilitates the 

analysis of individual consumption patterns, allowing for personalized services, such as recommending 

optimal times for operating high-energy appliances. 
The rest of this paper is organized as follows: Section 2, focuses on the topic of load forecasting at the 

edge, providing a detailed review of related studies and highlighting advancements and challenges in this field. 

Section 3, delves into data compression techniques, categorizing various methods for minimizing data volumes 

generated by smart meters. This section emphasizes the importance of data compression in optimizing 

bandwidth utilization and reducing storage costs. In Section 4, encryption methods are explored, offering a 

comprehensive review of recent developments and their applicability to smart meter data. Special attention is 

paid to practical encryption algorithms tailored for securing data in smart grid environments. Section 5, 

examines the role and methodologies of load forecasting, providing insights into its critical applications in 

energy management. Section 6, introduces the proposed framework in detail, discussing its architecture and 

the hardware components. This section also presents the results of the framework's implementation, evaluating 

its performance in terms of prediction accuracy, data compression rates, and energy consumption. In 

conclusion section, this study summarizes the findings, highlighting the proposed framework’s exceptional 

performance in prediction accuracy, data security, energy efficiency, and operational cost-effectiveness. These 

achievements position the framework as a highly effective and scalable solution for the evolving needs of future 
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smart grids. Additionally, the study outlines potential directions for future research to further enhance the 

framework's capabilities and adaptability. 
 

2. RELATED WORK 

In recent years, load forecasting has become a critical area in energy management and power grid. 

numerous research efforts have been dedicated to this topic. These studies can be categorized based on various 

perspectives, such as forecasting horizon (short-term, mid-term, or long-term), forecasting level (grid-level, 

regional, or household), consumer type (industrial, commercial, or residential), and the methods employed 

(traditional models, machine learning, or deep learning). However, despite significant advancements in 

algorithms and forecasting methods, finite attention has been given to optimizing and modifying the existing 

architectures used for conducting these studies. Most research has focused on utilizing cloud platforms for 

data processing and load forecasting. While these approaches offer high computational power, they face 

challenges such as high latency, data transmission costs, and dependency on centralized infrastructures. Amid 

these challenges, performing load forecasting at the edge has emerged as an innovative solution. This 

approach moves data processing and forecasting closer to the data source, reducing latency, enabling real-

time analysis, and improving data security.  Nevertheless, the number of studies and research efforts in this 

area is still limited, emphasizing the need for further exploration and the development of lightweight and 

efficient models capable of operating effectively on edge devices. 
The authors in  [8] explores the application of edge computing and federated learning in STLF for smart 

homes. The researchers address challenges related to privacy preservation and the need for diverse and large 

datasets for training models by utilizing edge computing and deep learning models, such as LSTM networks. 

Simulation results conducted using data from 200 homes in Texas, USA, demonstrate that this method improves 

prediction accuracy while reducing network load by up to 97% in some scenarios. Personalized models trained 

with local data also outperformed generalized models. This study highlights that combining edge computing 

with federated learning offers an efficient and secure solution for STLF in smart grids. 

Lekidis and Papageorgioua [9] proposed a novel edge-based approach for STLF in home energy 

management systems (HEMS). The proposed method employs the Temporal Fusion Transformer (TFT), a deep 

learning model specifically designed for time series forecasting. Input data for this model include historical 

energy consumption from smart meters, environmental conditions (e.g., temperature, humidity, and radiation), 

and categorical values such as demographic information. The proposed framework is implemented in a multi-

access edge computing (MEC) environment, where data are processed locally, eliminating the need to transmit 

sensitive information to central servers. This architecture consists of three layers: the device layer (data 

collection), the service layer (data storage and pre-processing), and the application layer (model execution for 

forecasting). Simulation results conducted on a HEMS system comprising photovoltaic panels, storage 

batteries, and smart meters demonstrate a forecasting accuracy of 94.1% using the TFT model. Additionally, 

the proposed edge-based framework reduced latency to 1.3 seconds, a significant improvement compared to 

central data center implementations.  

Pang et al. [10] proposed a distributed framework for smart grid load forecasting based on edge computing 

and matching theory. The main objective of this research is to optimize intelligent power grid systems by 

reducing system overhead, data transmission delay, and resource consumption. Within this framework, a 

delay-aware power resource allocation algorithm (RAA) is designed to enhance system efficiency by task 

partitioning and distributing them across edge devices.  Experimental results demonstrate that the proposed 

algorithm stabilizes system overhead after 40 iterations. Additionally, for fewer than 50 users, the average 

delay is reduced to less than 13 seconds, outperforming other algorithms. This research significantly 

contributes to the digitalization and intelligent development of smart grids and serves as an efficient solution 

for resource allocation and operational cost reduction in future power systems. Savi and Olivadese [11] 

introduces a distributed architecture for STLF based on Edge Computing and Federated Learning. Using 

LSTM models, energy consumption data is processed locally on edge devices (e.g., smart meters), and local 

models are aggregated to produce a global model. Federated Learning ensures that sensitive user data remains 

local, with only model weights exchanged between devices and the central server. Input features for the model 

include historical energy consumption, calendar information (e.g., day and hour), and weather conditions 

(e.g., temperature). Simulation results indicate that this approach achieves comparable accuracy to centralized 
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architectures while significantly reducing training time and lowering data transmission volume by up to 50 

times. In addition to improving scalability and preserving privacy, the architecture enables user clustering 

based on behavioral or socioeconomic similarities, further enhancing forecasting accuracy.  Gao et al. [12] 

develop a decentralized federated learning (DFL) framework for load forecasting in residential buildings. In 

this approach, data is processed locally on edge devices, and load forecasting models are updated by 

exchanging gradients between smart home agents in each residential unit. They proposes a gradient selection 

mechanism to improve communication efficiency and prediction accuracy. This mechanism reduces the size 

and frequency of gradient exchanges between agents while simultaneously enhancing communication 

performance and forecasting accuracy. Experiments conducted on the Pecan Street dataset demonstrate that 

the PriResi framework achieves 97% prediction accuracy while preserving user privacy and reducing system 

runtime by up to 19% compared to existing methods. 

A review of the latest articles related to load forecasting at the edge level reveals a significant gap in fully 

offline forecasting capabilities at this level. In other words, many existing approaches still require 

communication with central servers for final data processing, which contradicts the philosophy of edge 

computing(minimizing dependence on data centers and enabling local processing).  

Moreover, some methods require powerful hardware. This problem may restrict the applicability of such 

models in environments with limited resources or specific constraints, as these settings often require 

lightweight and adaptable solutions. Therefore, further research is essential to develop load forecasting models 

capable of operating fully independently and efficiently at the edge level. 

3. DATA COMPRESSION 

Over the past decades, with the advancements in industrial revolutions, the evolution from traditional grids 

to smart grids has progressed at a remarkable pace. In smart grids, a massive volume of data is collected, 

analyzed, processed, and transmitted through various devices such as smart meters, RTUs, PMUs, and other 

equipment. This data include information such as voltage, current, frequency, active and reactive power, and 

more, sampled and stored at different frequencies. With the expansion of power grids and the increasing 

number of smart meters, the volume of data generated has grown exponentially. It is estimated that a typical 

smart meter in the United States generates more than 1 GB of data every day. By considering the deployment 

of millions of meters, the daily data volume becomes enormous. This vast amount of data creates challenges 

such as high storage costs, limited bandwidth, and delays in data transmission.  

To address these challenges, various solutions have been proposed, among which data compression stands 

out as one of the most practical approaches. Data compression is the process of reducing data volume by 

eliminating redundant information or representing it more efficiently, thereby minimizing storage requirements 

and optimizing data transmission.  In general, data compression methods can be classified into two main 

categories: lossless and lossy. Lossless methods preserve all the original data information and are more 

suitable for applications requiring highly accurate data, such as power quality analysis. These methods are 

typically used in scenarios where even minor changes or losses in data can negatively impact analysis or 

system performance. For instance, in power quality monitoring systems, precise information about harmonic 

and voltage fluctuations is essential for identifying network issues. Common algorithms for lossless 

compression include Huffman Coding, Run-Length Encoding (RLE), LZW (Lempel-Ziv-Welch) Compression, 

and Arithmetic Coding. These algorithms compress data using repetitive patterns without altering the original 

information.  In contrast, lossy methods reduce data volume by eliminating non-essential details. These methods 

are commonly used in applications where reducing data size is more critical than retaining fine details. Lossy 

methods can significantly reduce data size; for example, advanced algorithms like Wavelet-Based Compression 

(DWT) or Frequency Selective Autoencoders have reported data reduction rates of up to 90%. However, 

employing these methods requires a careful balance between data reconstruction quality and the compression 

ratio. Common algorithms for lossy compression include Discrete Wavelet Transform (DWT), Discrete Cosine 

Transform (DCT), Autoencoders, Fourier Transform, and its variants like Fast Fourier Transform (FFT). 

Figure 1 illustrates the categorization of data compression methods. 
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Fig. 1.  Data compression methods 

 

Like forecasting studies, data compression also employs specific metrics to evaluate the performance of 

methods. These metrics serve as tools to measure efficiency, accuracy, and the alignment of methods with 

various application requirements. In data compression methods, evaluation metrics are essential for assessing 

the effectiveness, quality, and adaptability of these approaches to system needs.  

These metrics not only assist developers in identifying the strengths and weaknesses of proposed methods 

but also provide clear criteria for comparing different algorithms. For instance, in a smart meter system that 

generates a massive volume of data, compression methods must ensure data volume reduction, preservation of 

reconstruction accuracy and processing speed. Using appropriate metrics for evaluation can aid in the optimal 

design of algorithms and find application in various fields such as real-time systems, IoT, and smart grids. 

Table 1 presents the key metrics for evaluating data compression methods. 
 

 

 

 

 

 

 

 

 

 

Table 1. Data compression metrics 



 

  

https://ict.bcnf.ir Page 6 

 

 
Implementation 

Complexity 
Common 

Applications 
Advantage Unit Formula Evaluation Goal Metric 

Low 
Data storage 

and 

transmission 

Reduces 

storage and 

transmission 

costs 

Dimensionless 𝐶𝑅 =
𝑆𝑖𝑧𝑒𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑆𝑖𝑧𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑
 

Measures data 

reduction 

relative to the 

original size 

Compression 

Ratio 

(CR) 

Low 

Optimization 

of storage 

and 

bandwidth 

Evaluates 

compression 

effectiveness 
Percentage 𝐶𝐺 = (1 −

𝑆𝑖𝑧𝑒𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑆𝑖𝑧𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑
) × 100 

Quantifies the 

efficiency of 

compression 

Compression 

Gain 

(CG) 

Medium 
Critical data 

analysis 
Preserves data 

quality 
Percentage  

or dB 

𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10
𝑀𝐴𝑋2

𝑀𝑆𝐸
  ,  

 
MAX: Maximum possible value of the original data 

Assesses the 

similarity of 

reconstructed 

data to the 

original 

Peak Signal-

to-Noise 

Ratio 

(PSNR) 

High 

Applications 

like power 

quality 

analysis 

Ensures high 

precision in 

analysis 

Data unit 𝑀𝑆𝐸 =  
1

𝑁
∑(𝐷𝑎𝑡𝑎𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 − 𝐷𝑎𝑡𝑎𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑)2

𝑁

𝑖=1

 

Measures the 

average squared 

error between 

original and 

reconstructed 

data 

Mean 

Squared 

Error 

(MSE) 

Low 

Reduces 

storage space 

for large 

datasets 

Reduces 

storage space 

for large 

datasets 

Percentage 𝑆𝐸 = (
𝑆𝑖𝑧𝑒𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 − 𝑆𝑖𝑧𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑

𝑆𝑖𝑧𝑒𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙
) × 100 

Calculates the 

percentage of 

storage space 

saved 

Storage 

Efficiency 

(SE) 

High 
Real-time 

systems 

Suitable for 

real-time 

applications 

Seconds 

or  

milliseconds 
- 

Measures the 

time required 

for compression  

Processing 

Time 

Low 
IoT and low-

power 

devices 

Efficient for 

IoT systems 
Joules or 

Watts 
𝐸𝐶 = 𝑃 × 𝑇(𝑃𝑜𝑤𝑒𝑟 × 𝑇𝑖𝑚𝑒) 

Evaluates 

energy used 

during 

compression 

Energy 

Consumption 

Medium 
Embedded 

systems 
Ideal for low-

power systems 
Operations per 

unit time 
- 

Quantifies 

resources 

needed for 

processing 

Computational 

Complexity 

Medium 
Real-time 

data transfer 

Evaluates 

efficiency in 

data 

transmission 

Bytes/second 𝑇𝑃 =
𝑆𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑

𝑇
 

Assesses the 

amount of data 

processed per 

second 

Throughput 

 

In recent years, with the rapid growth of smart grid technologies and the increasing volume of data 

generated by different devices, numerous studies have been conducted on data compression to optimize 

storage, transmission, and processing. These studies aim to reduce costs, enhance efficiency, and maintain 

data quality. Scalable infrastructures are crucial for managing big data in smart grids, as they enable real-

time storage and processing of massive data volumes with minimal cost. These infrastructures enhance system 

efficiency and ensure network security and stability by leveraging techniques such as data compression and 

distributed computing [13]. 

Liu et al. [14] present a novel framework based on the Divide-and-Conquer approach for compressing and 

reconstructing smart meter data. The goal is to reduce data volume while preserving accuracy and minimizing 

processing time. In this method, electrical load data is divided into three categories: event, fluctuation, and 

steady state, with each category processed using a different compression technique. Event data, due to its 

critical importance for detecting events, is stored without compression. For fluctuation data, a Compressed 

Sensing (CS)-based approach utilizing sparse representation and adaptive measurements is employed. Steady-

state data is compressed using an improved Symbolic Aggregate Approximation (SAX) method, optimized by 

the DIRECT algorithm. Experimental results show that this method achieves an average compression ratio of 

32.3 and a reconstruction accuracy of 99.7%. Additionally, the processing time for second-interval data is 

approximately 11 seconds per day, making it suitable for real-time applications. 

Syamsudin et al. [15] introduce an efficient framework for the compression and classification of power 

quality disturbances (PQDs) in distributed power systems. The authors utilize three main compression 

algorithms: Wavelet Transform, Autoencoder, and Convolutional Neural Network (CNN) to process one-

dimensional data. Synthetic data for 14 different types of PQDs, generated according to the IEEE-1159 

standard, were tested within this framework. The classification process integrates compressed data with the 

CNN algorithm, achieving high accuracy in identifying PQDs even in noisy environments. The study 
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demonstrates that employing CNN for data compression and classification significantly reduces training time 

and achieves a high accuracy of 99.74%. In contrast, Wavelet Transform and Autoencoder achieve accuracies 

of 99.52% and 99.03%, respectively, with longer processing times. This framework not only delivers high-

speed and accurate processing of PQD data but also highlights that the combination of compression and 

classification can significantly enhance the performance of deep learning networks. 

The authors in [16], propose a data compression algorithm based on improved wavelet transform for power 

system data. Leveraging the time-frequency localization properties and multi-resolution analysis capabilities 

of wavelet transform, the proposed method effectively compresses power domain data and enables precise 

signal reconstruction. The algorithm operates in three main stages: splitting, prediction, and updating, which 

enhance reconstruction accuracy and minimize reconstruction errors. Experimental results demonstrate that 

the proposed algorithm outperforms conventional methods and earlier wavelet transform versions. It achieves 

a compression ratio of 13.52% and a mean squared error of 0.243. Additionally, the energy recovery coefficient 

of 99.9992% highlights its superior performance. With high processing speed and real-time execution 

capabilities, the proposed method offers an efficient solution for improving the efficiency of smart power 

systems while reducing storage and transmission costs. 

Wu et al. [17] introduce a dynamic and parallel two-stage lossless data compression method for smart grid 

data. The first stage improves the traditional LZW algorithm by incorporating parallel search and dynamic 

variable-length coding. The second stage combines the improved LZW algorithm with the Huffman algorithm 

to form a two-stage compression method. The proposed approach was tested on real smart grid data in a 

MATLAB simulation environment. Results demonstrate that the proposed algorithm significantly outperforms 

traditional LZW, Huffman, and PDLZW algorithms in terms of compression ratio, compression factor, save 

percentage, and compression gain, with at least 52% improvement. Additionally, the algorithm reduces storage 

space effectively, making data transmission more efficient and offering broad applicability for smart grid data 

processing. 

The authors in [18], proposes a novel method for smart meter data transmission based on compressed 

sensing. The method utilizes an over-complete dictionary matrix for sparse representation of data and employs 

the ROMP algorithm for data reconstruction, reducing reconstruction errors. In this approach, current data 

from household appliances are sparsely represented and compressed using a random Gaussian matrix as the 

measurement matrix. The compressed data are then transmitted and reconstructed at the data center. 

Experimental results demonstrate that this method outperforms traditional techniques such as DWT+OMP 

and DCT+ROMP in terms of reconstruction accuracy and error reduction. For instance, in tests with 

appliances such as hair dryers, electric vehicles, and water dispensers, the proposed method achieved an 

average signal-to-noise ratio (SNR) of 64.04 dB and a mean squared error(MSE) of 0.02. This method not only 

reduces data transmission costs but also lowers the computational complexity of load identification, making it 

highly practical for smart power systems. 
By reviewing these articles, it can be concluded that the challenges and research gaps can be categorized 

into the following areas: delay computation, energy consumption for implementing compression algorithms, 

reliance on centralized architectures for computations, and the computational complexity of many proposed 

algorithms. These issues are particularly significant in applications such as IoT systems and smart grids, which 

face hardware limitations and require real-time processing. One key challenge is the mismatch between the 

computational power of edge devices and the complexity of compression algorithms. Advanced algorithms, 

such as deep learning or complex transforms, though offering high accuracy and compression rates, are often 

impractical to execute on devices with limited power, memory, and bandwidth. This results in increased energy 

consumption and longer execution times, which can be critical for systems like smart homes and renewable 

energy stations. On the other hand, using centralized architectures for performing compression computations, 

while providing greater computational power, leads to higher delays, increased data transmission costs, and 

security risks. These problems are particularly relevant in distributed and real-time environments, such as 

load management in smart grids. Ultimately, the need for developing lightweight and efficient algorithms that 

align with the computational and energy constraints of edge devices is recognized as a major research gap. 

These algorithms should be capable of delivering suitable compression rates while minimizing delay and 

energy consumption and maintaining data reconstruction quality. Furthermore, integrating these algorithms 

with distributed architectures such as edge computing can offer a sustainable and effective solution to address 

these challenges. 
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4. ENCRYPTION 

As mentioned in previous sections, smart meters have emerged as indispensable components of modern 

power systems. By continuously measuring and transmitting sensitive data such as energy consumption, usage 

patterns, and time-specific information, these devices facilitate real-time monitoring and optimization of grid 

conditions. Such capabilities are pivotal for maintaining grid stability and efficiency in increasingly complex 

energy systems. Beyond real-time monitoring, the data generated by smart meters serves as a critical input for 

advanced studies such as load forecasting. These studies enable accurate predictions of energy demand, which 

are foundational for downstream applications like economic load distribution, unit commitment, and demand-

response management.  

However, the integration of smart meters into power grids introduces significant challenges, with data 

security and privacy ranking among the most critical concerns. The sensitive nature of the information 

collected by smart meters necessitates encryption mechanisms to prevent unauthorized access or misuse. For 

instance, consumption patterns can reveal personal information about users, such as their daily routines, 

appliance usage, or even occupancy status. The unauthorized disclosure of such data poses severe privacy 

risks and undermines user trust in the system. Consequently, encryption has become a cornerstone of data 

security in smart grids, ensuring the confidentiality, integrity, and authenticity of transmitted and stored 

information. 
The unauthorized disclosure of such information not only compromises individual privacy but also 

undermines trust in smart grid technologies. Public skepticism about data security can become a barrier to 

widespread adoption of smart meters, which are essential for the transition to modern, efficient power systems. 

Therefore, addressing these challenges is imperative to ensure user confidence and protect against potential 

misuse of data. To mitigate these risks, encryption mechanisms have become a cornerstone of data security in 

smart grids. Encryption ensures that data transmitted between smart meters, substations, and central systems 

remains confidential, preventing eavesdropping and tampering. Advanced encryption protocols, such as end-

to-end encryption, are designed to secure both data in transit and at rest, ensuring that even if data is 

intercepted, it remains unintelligible to unauthorized parties. Additionally, techniques like digital signatures 

and secure key management systems are employed to verify the authenticity and integrity of the data, 

preventing alterations or spoofing attacks. Beyond encryption, other measures such as data anonymization 

and aggregation are being explored to enhance privacy. Anonymization techniques remove or mask 

identifiable information, while data aggregation combines data from multiple users to obscure individual 

patterns. These methods not only reduce privacy risks but also allow utility companies to analyze trends and 

make informed decisions without compromising individual user identities. 

The encryption process begins with key generation and management, where unique cryptographic keys are 

securely generated for devices and servers. These keys play a vital role in both encrypting and decrypting data. 

Secure key distribution protocols are implemented to mitigate the risk of interception during communication. 

Following key generation, sensitive data is encrypted using cryptographic algorithms. Symmetric encryption 

algorithms like AES (Advanced Encryption Standard) are favored for their speed and efficiency in encrypting 

large volumes of data. Alternatively, asymmetric algorithms like RSA (Rivest–Shamir–Adleman) are used in 

scenarios requiring secure key exchange. Once encrypted, the data is transmitted over secure communication 

channels such as TLS (Transport Layer Security) or IPSec (Internet Protocol Security). These protocols ensure 

that even if data packets are intercepted during transmission, their contents remain inaccessible to 

unauthorized entities. At the destination, the data is decrypted using the corresponding keys, restoring it to its 

original, usable form. This bidirectional process ensures that only authorized parties can access or interpret 

the data.   
Table 2 categorizes practical cryptographic methods based on their type, key length, security level, 

processing speed, energy consumption, applications, and specific advantages. This classification facilitates 

the optimal selection of cryptographic algorithms for various applications, particularly in smart grids and 

smart meters. 
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Table 2. Cryptographic Algorithm Comparison 

 

Algorithm Type 
Key Length 

(Bits) 

Security 

Level 

Processing 

Speed 

Energy 

Consumption 
Applications Advantages 

Advanced 

Encryption 
Standard 

(AES) 

Symmetric 128/192/256 High Very Fast Low 

IoT devices, 

Real-time data 

encryption 

Widely 

adopted, 
efficient, and 

secure 

Data 
Encryption 

Standard 

(DES) 

Symmetric 56 
Low 

(outdated) 
Fast Moderate 

Legacy systems, 

low-security 
applications 

Simple 

design 

Blowfish Symmetric 32 – 448 Moderate Fast Low 

Embedded 
systems, 

password 

storage 

Adjustable 

key size 

ChaCha20 Symmetric 256 Very High Very Fast Very Low 

Mobile devices, 

secure 

communications 

Resistant to 

timing 

attacks 

Twofish Symmetric 128/192/256 High Moderate Low 
Embedded 

systems, file 

encryption 

Open-source 

and flexible 

Triple DES 

(3DES) 
Symmetric 168 Moderate Slow High 

Financial 
services, secure 

communications 

Enhanced 
security over 

DES 

RC4 
(Rivest 

Cipher 4) 
Symmetric 

Variable  
(40 – 2048) 

Low 

(deprecated) 
Very Fast Moderate 

Streaming 

encryption 

Lightweight 
and fast for 

low-security 

tasks 

Caesar 

Cipher 
Symmetric 

Small  
)Key = Shift 

Value) 
Very Low Very Fast Very Low 

Educational, 
low-security 

applications 

Simple and 
easy to 

implement 

Rivest -
Shamir -

Adleman 

(RSA) 

Asymmetric 1024/2048/4096 High Moderate High 

Secure key 
exchange, 

digital 

signatures 

Strong for 

key exchange 

Elliptic Curve 

Cryptography 
(ECC) 

Asymmetric 160/256 Very High  Fast Low 

smart meters 

Mobile 
Applications 

Small key 
size with 

strong 

security 

Diffie-
Hellman 

Asymmetric 2048/4096 High Moderate High 
Secure key 
exchange 

Simplifies 

secure key 

sharing 

Digital 
Signature 

Algorithm 

(DSA) 

Asymmetric 1024/2048/3072 High Moderate Moderate 
Digital 

signatures only 

Compact 
signatures, 

efficient 

validation 

Lattice-Based 

Cryptography 
Asymmetric 256/512 Very High High Moderate 

Quantum-
resistant 

encryption 

Secure 

against 

quantum 
attacks 

 

In addition to securing data in transit, encryption plays a critical role in protecting stored data. Whether 

the data is archived on local devices or centralized servers, storage encryption mechanisms safeguard it 

against unauthorized access or tampering. For instance, advanced techniques like database encryption and 

hardware security modules (HSMs) are commonly employed to secure data at rest. By implementing these 

comprehensive encryption strategies, smart grids can ensure the secure and efficient operation of power grids. 

As the energy sector becomes increasingly digitalized, encryption remains a fundamental pillar of resilience, 

enabling the transition to a more sustainable and secure energy ecosystem. The authors in [19] addresses the 

challenges of security and privacy preservation in IoT-enabled smart metering systems. The authors introduce 

data aggregation methods to reduce network traffic while safeguarding user privacy. Fully Homomorphic 

Encryption (FHE) and Secure MPC are employed to process encrypted data, enabling mathematical 

operations on the encrypted information. Both approaches face challenges such as message complexity and 
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data size. The paper proposes novel protocols for adapting these technologies in AMI. These protocols encrypt 

measurement data from smart meters and aggregate it hierarchically without revealing the actual values. 

Simulation results show that the Secure MPC-based protocol is a reliable option for privacy-preserving data 

aggregation, offering comparable performance to the Paillier encryption system and greater efficiency than 

FHE. This research represents a significant step toward enhancing the security and efficiency of smart 

metering networks. Hseiki et al. [20] focuses on addressing the growing cybersecurity challenges in smart 

energy meters (SEMs), which are critical components of smart grid. It proposes a secure and resilient SEM 

design that enhances data integrity, prevents cyberattacks such as Distributed Denial of Service (DDoS), and 

protects against energy theft. The study explores the evolution of SEMs from conventional meters to modern 

designs, highlighting their functionalities, vulnerabilities, and comparative advantages. The proposed SEM 

incorporates LoRaWAN technology for secure and efficient communication while employing a dual-computing 

unit architecture to isolate critical data processing from user-facing operations. This design ensures robust 

security by integrating tamper detection, unidirectional data transfer, and real-time monitoring capabilities. 

Practical implementation results demonstrate the SEM's effectiveness in maintaining data integrity and 

mitigating cyber threats, making it a comprehensive solution for the evolving needs of smart grids. Du et al. 

[21] introduces a novel authentication method designed for smart meters in the context of smart grids. It focuses 

on addressing the dual challenges of securing data transmission and reducing computational overhead. The 

proposed scheme utilizes the Chinese Remainder Theorem (CRT) to enhance the efficiency of identity 

authentication, enabling lightweight operations suited for resource-constrained environments. Key 

contributions include the ability to revoke individual smart meter access by leveraging random secret values 

embedded in hash functions, alongside employing Elliptic Curve Cryptography (ECC) for data encryption. The 

scheme also addresses various security threats, such as passive attacks, replay attacks, and identity spoofing, 

by combining hash functions, timestamps, and modular arithmetic to secure data integrity and confidentiality. 

Performance evaluations reveal the scheme’s superior computational and communication efficiency compared 

to existing methods, making it well-suited for large-scale smart grid deployments.  

Based on these studies, the necessity of encryption can be categorized into four main areas: preserving user 

privacy, preventing cyberattacks, ensuring data integrity, and protecting critical infrastructure. Additionally, 

the most significant challenges of encryption in smart meters include limited hardware resources, processing 

time constraints, balancing security and performance, and key management. 

5. LOAD FORECASTING 

Load forecasting is a critical aspect of modern energy management systems, enabling grid operators to 

predict future energy demand accurately. This process ensures the efficient allocation of resources, optimal 

scheduling of generation units, and reliable operation of power systems. By anticipating fluctuations in energy 

consumption, load forecasting minimizes operational costs, prevents overloading, and enhances grid stability. 

It also serves as a foundational tool for other applications, such as economic load dispatch, unit commitment, 

and demand-response programs. With the increasing integration of renewable energy sources and the 

complexities introduced by distributed energy resources, the accuracy and adaptability of load forecasting 

methods have become more vital than ever. 
STLF specifically focuses on predicting energy demand for time horizons ranging from minutes to several 

hours ahead. This type of forecasting is particularly crucial for real-time grid operations, as it aids in 

immediate decision-making for load balancing and resource allocation. STLF relies on analyzing real-time 

and  historical data, including weather conditions, time of day, and consumption patterns, to identify demand 

trends. In decentralized energy management systems, where data from smart meters and edge devices are used, 

STLF enables localized decision-making and reduces reliance on centralized systems. In Table 3, the 

forecasting evaluation metrics have been categorized. It is noteworthy that the actual values (𝑦𝑖) represent the 

observed data points, while the predicted values (𝑦̂𝑖) are the estimates generated by the forecasting model. 

These metrics are computed over n observations to evaluate the model's accuracy and performance. 
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Table 3. Forecasting accuracy metrics 

 
Metric Purpose Formula Interpretation Range Advantages Disadvantages 

Mean 

Absolute 

Error  
(MAE) 

measures the average 

magnitude of errors 

in a set of 
predictions. 

𝑀𝐴𝐸 =  
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 
Lower MAE values 

reflect higher 

prediction accuracy 

[0,∞) 

Easy to 
understand 

and compute. 

Lower values 

indicate higher 

forecasting 
accuracy. 

Mean 

Squared 

Error 
(MSE) 

Penalizes larger 

errors more than 
MAE to emphasize 

significant 

deviations. 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

 

Lower values 

indicate higher 
accuracy. 

(0 indicates perfect 

predictions) 

[0,∞) 

Highlights 

significant 

deviations 
effectively 

Sensitive to 

outliers 

Root Mean 

Squared 
Error 

(RMSE) 

Represents the 

standard deviation of 

prediction errors. 
𝑅𝑀𝑆𝐸 = √

1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

 

Lower values 

indicate better 

model performance. 

[0,∞) 

Provides 
errors in the 

same units as 

the target 
variable 

Amplifies the 

impact of 

outliers 

Mean 

Absolute 
Percentage 

Error 

(MAPE) 

prediction error as a 
percentage of the 

actual values 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖

|

𝑛

𝑖=1

× 100 
Expresses errors as 

a percentage of 

actual values. 

[0,∞)% 
Easy to 

interpret 

Sensitive to 
small actual 

values 

Symmetric 

Mean 
Absolute 

Percentage 

Error 
(sMAPE) 

addresses the 

limitations of MAPE 

by ensuring a 
symmetric 

calculation that 

treats over- and 
under-predictions 

equally. 

1

𝑛
∑

|𝑦𝑖 − 𝑦̂𝑖|

(|𝑦𝑖| + |𝑦̂𝑖|)/2

𝑛

𝑖=1

× 100 

Low sMAPE 

values(close to 0%) 

indicate accurate 
predictions with 

minimal error. 

[0,100]% 

Less 

sensitive to 

extreme 
outliers than 

MAPE. 

Sensitive to 

values near 
zero, can lead 

to large 

percentage 
errors. 

Coefficient 
of 

Determinati

on (𝑅2) 

Explains the 

proportion of 

variance captured by 
the model. 

𝑅2 = 1 −

1
𝑛

∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛
𝑖=1

1
𝑛

∑ (𝑦𝑖 − 𝑦̅𝑖)2𝑛
𝑖=1

 

Values close to 1 

indicate a better fit. 

Negative values 
show poor fit. 

[0,1]  

or 

 (−∞,1] 

Indicates 

overall 

model 
performance 

Does not 

indicate the 
magnitude of 

prediction 

errors 

Mean Bias 
Error  

(MBE) 

Measures average 

bias in predictions 

(under or 
overestimation). 

𝑀𝐴𝐸 =  
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

𝑛

𝑖=1

 
Values close to 0 
indicate unbiased 

predictions. 

(−∞,∞) 

Highlights 

systematic 

bias in 
predictions 

Cannot 
measure the 

size of errors 

Forecast 

Skill Score 
(FSS) 

Evaluates relative 

improvement over a 
benchmark model. 

𝐹𝑆𝑆 = 1 −
𝑀𝑆𝐸𝑚𝑜𝑑𝑒𝑙

𝑀𝑆𝐸𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘

 
Values closer to 1 

indicate higher 
model skill. 

(−∞,1] 

Enables 

comparison 

to 
benchmark 

models. 

Requires a 

well-defined 
benchmark 

 

6. PROPOSED SCHEME 

In the previous sections, the role and importance of data compression and encryption in enhancing the 

performance of existing systems in smart grids were discussed. Data compression was emphasized as a solution 

for reducing the massive volume of data generated by smart meters, while encryption was highlighted as a 

critical measure to ensure data security and privacy. Additionally, the significance of load forecasting, 

particularly STLF, was addressed as a vital requirement for optimizing energy resource management and 

preventing sudden network overloading.  
This section introduces the proposed framework aimed at addressing two major challenges in smart grids. 

The framework is structured into three main phases. The first phase focuses on the design and implementation 

of the proposed smart meter hardware, specifically tailored to support efficient data compression and 

encryption processes. The second phase elaborates on the computational algorithms employed in the smart 

meter, incorporating advanced techniques for real-time and optimized data compression and encryption. 

Finally, the third phase evaluates the results obtained from implementing the proposed framework in either a 

simulated or real-world environment, analyzing key metrics such as prediction accuracy, compression ratio, 

transmission delay, and energy consumption.  
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This paper presents a novel framework to address two critical challenges in smart grids: reducing the 

substantial volume of data generated by smart meters through efficient compression algorithms and enhancing 

data transmission security using advanced edge-level encryption techniques. The proposed framework not only 

improves the system’s security and efficiency but also provides a sustainable and reliable solution for data 

management and ensures the stable operation of the smart grid. 
 

6.1 Hardware  
The proposed system is built on a two-layer PCB with dimensions of 5′′ × 4.2′′, designed to integrate the 

functionalities required for advanced smart meter operations. The hardware of the proposed smart meter is 

illustrated in Figure 2. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.  smart meter hardware 

 

The system’s core is an ESP32-WROVER-E, a powerful System-on-Chip (SoC) featuring a 32-bit dual-core 

CPU, 8MB SRAM, 4MB Flash memory, and built-in connectivity for Wi-Fi and Bluetooth, alongside interfaces 

like I2C, SPI, and UART. The ESP32 supports adjustable clock frequencies ranging from 80 MHz to 240 MHz 

and includes a low-power co-processor, making it ideal for IoT platforms, robotics, and wearable devices. For 

energy metering and monitoring, the system incorporates the ADE7758, a highly specialized IC designed for 

precise energy metering and power monitoring. The ADE7758 can measure parameters such as active and 

reactive power, voltage, and current across a dynamic range of 1000:1, ensuring accurate data collection 

under varying load conditions. To ensure accurate time synchronization, the system includes the DS3231, a 

highly accurate real-time clock (RTC) IC. The Clock section is also equipped with a backup battery to maintain 

uninterrupted time tracking during power outages. Its versatility extends to applications like data logging, 

industrial automation, and scheduling, making it a critical component in the overall design.  

The system also incorporates a display unit, an OLED screen, which offers excellent visual clarity even in 

dim lighting conditions. With low power consumption and a wide viewing angle, it is perfectly suited for 

applications where energy efficiency and readability are priorities. For communication, the system employs a 

LoRa module, leveraging long-range, low-power wireless technology to transmit and receive data reliably. 

Operating on various frequency bands, such as 433 MHz or 868 MHz (depending on regional regulations), the 

LoRa module ensures efficient data exchange across extended distances, making it ideal for remote monitoring 

applications. The hardware includes a robust power supply unit (PSU) capable of converting grid voltage to 

a stable 5V DC, ensuring consistent operation of all system components. Additional circuits for current and 

voltage measurement, facilitated by the ADE7758, further enhance the system’s ability to perform real-time 

monitoring and data analysis with high accuracy. By focusing on data accuracy, security, and communication 

efficiency, it provides a comprehensive solution for modern smart metering, ensuring scalability, reliability, 

and energy conservation for smart grid applications. 
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6.2 Proposed Algorithm 

In the proposed framework, energy consumption data are first processed using time series decomposition 

methods for load forecasting, enabling the identification of consumption trends and patterns with high 

precision. Following the forecasting stage, the data undergo compression using two methods (RLE and 

Huffman Coding) to reduce data volume and optimize storage and transmission efficiency. Subsequently, for 

ensuring secure transmission, the AES algorithm is employed to encrypt the data, safeguarding it against 

unauthorized access. Once encrypted, the data are stored locally on an SD card integrated into the smart 

meter. This additional layer of reliability ensures that even in cases of transmission errors or server failures, 

the data remain accessible and can be retrieved with precision. This approach not only enhances the fault 

tolerance of the system but also reduces dependency on continuous server connectivity. The stored data can 

then be transmitted to central servers as needed, based on environmental conditions or operational demands, 

ensuring seamless integration with broader energy management frameworks. This multi-layered process 

effectively balances accuracy, efficiency, and security, paving the way for a robust and decentralized energy 

management system. Each stage of the process is examined in detail in the subsequent sections, covering 

methodologies, implementation challenges, and performance evaluations . 
 

6.2.1 Load forecasting  

In the proposed framework of this study, the load forecasting phase is designed to execute all computations 

directly at the edge, specifically within the smart meter itself. This edge-level processing reduces reliance on 

centralized systems, ensuring faster, localized predictions with minimal latency. To achieve this, a Moving 

Average (MA) method has been utilized for load forecasting. The MA approach works by smoothing out 

fluctuations in energy consumption data over a predefined window size, effectively identifying trends and 

patterns in the historical data. For example, the smart meter aggregates past consumption values within a 

specific time frame, calculates their average, and uses this value as the forecast for the next time step. This 

process is repeated iteratively, updating predictions in near real-time as new data becomes available.  
The use of the MA method in this context provides a balance between computational simplicity and 

forecasting accuracy, making it ideal for resource-constrained edge devices like smart meters. Additionally, 

the Auto-Regressive (AR) method can be employed as a more sophisticated alternative for scenarios requiring 

higher prediction accuracy. While the MA method excels in its simplicity and low computational requirements, 

the AR method captures dynamic consumption patterns more effectively by considering the relationships 

between past data points and current energy usage. By performing these computations at the edge, the system 

not only enhances privacy but also reduces data transmission overhead and supports a decentralized energy 

management framework. Leveraging the computational power and connectivity of the ESP32, both MA and 

AR methods can be implemented efficiently. The MA method provides a lightweight and energy-efficient 

solution for stable environments, whereas the AR method offers improved accuracy in dynamic scenarios, 

making the combination of these approaches a versatile tool for edge-based load forecasting in decentralized 

systems. 
Centralized load forecasting is a traditional approach in power grid management, where all consumer data 

is transmitted to central servers for processing, and the forecasting results are then distributed back to the 

network. This method, due to access to powerful processing resources and large volumes of aggregated data, 

typically offers high prediction accuracy. Moreover, the ability to combine data from multiple sources enables 

deeper analysis and optimized outcomes. However, this approach faces challenges such as delays in data 

transmission, high communication infrastructure costs, and the risk of privacy breaches. Additionally, its heavy 

reliance on centralized infrastructure can jeopardize system stability during critical situations like 

communication outages. In contrast, edge-level load forecasting utilizes edge computing technologies to 

process data locally, at the source of generation (e.g., smart meters). This approach minimizes the need to 

transmit data to central servers, thereby reducing delays in analysis and prediction while enhancing data 

security through localized processing. It also lowers communication costs and enables personalized services 

for consumers. However, limited computational and energy resources on edge devices may affect the accuracy 

and performance of forecasting models. Despite these limitations, this method is a scalable and efficient 

solution for distributed smart grids and decentralized energy management systems. 

 

 

6.2.2 Data Compression  
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As previously mentioned, there are various methods available for data compression. Considering this, the 

focus of this study is on implementing the entire computational process at the edge level. This approach 

significantly reduces reliance on centralized systems and enhances data privacy. Given the limited 

computational resources typically available on edge devices, such as smart meters, the selection of algorithms 

that require minimal computational power while maintaining high processing speeds becomes crucial. 
Therefore, lightweight and optimized algorithms are essential to ensure smooth operation and scalability.  Two 

practical methods for data compression that not only impose minimal computational overhead but also deliver 

satisfactory performance are Run-Length Encoding(RLE) and Huffman Coding. These methods are 

particularly popular for resource-constrained edge devices, such as smart meters, due to their simplicity and 

low computational requirements. 

The RLE method compresses data by converting sequences of repeated values into a single value along 

with its repetition count, significantly reducing data size for datasets with consistent or repetitive patterns. For 

example, in energy consumption monitoring, if a smart meter records constant power usage over several time 

intervals, RLE can compress the data by representing the repeated values with a single entry and the count of 

occurrences. This approach not only minimizes the storage requirements but also reduces the bandwidth 

needed for data transmission, making it particularly effective for edge devices with limited resources. 
Additionally, RLE is inherently robust against noise within the data, as small variations can often be 

normalized before encoding to maximize compression efficiency. This makes it a practical choice for 

applications requiring frequent data updates without significantly increasing processing overhead. Figure 3 

illustrates the pseudocode for the RLE method. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  Pseudocode of Run- Length Encoding(RLE) 
 

However, while RLE is highly effective for repetitive data, optimizing its performance for edge devices may 

involve preprocessing techniques, such as filtering out minor fluctuations, to ensure consistent runs of data 

are better compressed.  
The Huffman Coding method is a widely used lossless data compression technique that operates by 

assigning shorter binary codes to more frequently occurring values and longer codes to less frequent ones. 

This approach ensures that the total length of the encoded data is minimized, making Huffman Coding highly 

efficient for datasets with skewed frequency distributions. Unlike fixed-length encoding methods, Huffman 

Coding uses variable-length codes based on the probability of occurrence, ensuring optimal compression 

tailored to the specific dataset. The process begins by analyzing the frequency of each value in the dataset and 

constructing a binary tree, known as the Huffman Tree. Each leaf of the tree represents a value, and its path 

from the root determines the binary code assigned to it. More frequent values are placed closer to the root, 

resulting in shorter codes, while less frequent values are assigned longer codes further from the root. This 

hierarchical structure guarantees that no code is a prefix of another, ensuring proper decoding. Figure 4 

illustrates the pseudocode for the Huffman Coding method. 
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Fig. 4.  Pseudocode of Huffman Coding 

 

Huffman Coding is particularly effective for datasets with repetitive or unevenly distributed values, such as 

periodic energy consumption patterns where certain values (e.g., peak or base load levels) occur more 

frequently. When implemented on resource-constrained hardware like the ESP32, Huffman Coding offers a 

balance between compression efficiency and computational feasibility. The ESP32’s processing capabilities 

can handle the creation of the Huffman Tree and the encoding process efficiently, provided the dataset size is 

within the microcontroller’s memory limits. 

 

6.2.2. Encryption 

Similar to the data compression phase, the encryption phase prioritizes two critical aspects: computational 

complexity and processing speed. These factors are crucial in ensuring that the encryption algorithms are not 

only secure but also efficient enough to be implemented on resource-constrained edge devices, such as smart 

meters. Low computational complexity allows the encryption process to be carried out without significantly 

burdening the device’s processing capabilities, ensuring smooth operation and minimal delays. 

The Advanced Encryption Standard (AES) is a robust symmetric encryption algorithm widely recognized for 

its balance of security, efficiency, and adaptability. Designed to operate on fixed block sizes of 128 bits, AES 

supports key lengths of 128, 192, or 256 bits, making it highly secure against brute-force attacks. Its lightweight 

computational requirements and high throughput make it particularly suitable for resource-constrained 

environments like smart meters and edge devices, where processing power and energy efficiency are critical.  
The AES encryption process involves multiple rounds of transformations, with the number of rounds depending 

on the key length: 10 for 128-bit keys, 12 for 192-bit keys, and 14 for 256-bit keys. Each round consists of four 

primary operations designed to ensure data confusion and diffusion. The first step, SubBytes, substitutes each 

byte in the data block with a corresponding value from a substitution box (S-Box), adding non-linearity and 

resistance to cryptanalysis. The second step, ShiftRows, shifts rows in the block cyclically, introducing data 

interdependency. The third step, MixColumns, mixes the columns of the block using a linear mathematical 

operation, spreading the influence of each byte across the block. Finally, the AddRoundKey step XORs the 

block with a round key derived from the original encryption key, securing the data with key-dependent 

transformations. Figure 5,  demonstrates the pseudocode for the AES encryption process. 
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Fig. 5.  Pseudocode of AES 

 
AES offers several advantages over other encryption algorithms. Its computational efficiency ensures fast 

encryption and decryption, making it suitable for real-time applications in energy systems. The algorithm’s 

adaptability to different key lengths allows users to choose their level of security based on system requirements. 

Additionally, AES’s widespread adoption as a global standard has led to extensive validation and optimization, 

ensuring compatibility with modern hardware and software, including edge devices like the ESP32. Compared 

to asymmetric encryption algorithms like RSA, which are better suited for key exchange, AES excels in 

encrypting large datasets due to its speed and lower resource consumption.  

 

6.3 Experimental results 

The experimental results provide key insights into the effectiveness of load forecasting and data processing 

techniques across two distinct scenarios. Scenario 1 employs real-time energy consumption data from a smart 

meter, emphasizing the feasibility of edge-based processing for localized computations. Scenario 2 uses a 

publicly available dataset, simulating conditions for lightweight, smaller-scale systems. The study evaluates 

two forecasting methods, Moving Average (MA) and Autoregressive (AR), focusing on metrics such as 

prediction accuracy, compression efficiency, latency, and energy consumption.  
Additionally, RLE and Huffman Coding are assessed for data compression, alongside the encryption 

overhead introduced by the AES algorithm. These analyses aim to determine the trade-offs between 

computational simplicity, latency, energy efficiency, and accuracy in a decentralized energy management 

framework. The results of the forecasting evaluation and the performance comparison of the methods are 

shown in Figures 6 and 7, respectively. 
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Fig. 6.  Evaluation of Forecasting Methods Across Scenarios 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 

Fig. 7. Comparison of Compression and Encryption Performance Metrics 
 

The  forecasting analysis demonstrates that AR model performs better in terms of accuracy compared to the 

MA method in both scenarios. The AR model consistently achieves lower error margins, with an overall 

accuracy improvement of around 3-4% compared to the MA method. This highlights the AR model's ability to 

adapt to dynamic consumption patterns, whereas the MA method struggles with transitional periods, especially 

at the dataset's start and end. Nevertheless, the MA method is computationally simpler, making it advantageous 

in environments with stable consumption trends or limited resources. In terms of data compression, Huffman 

Coding achieves a higher compression ratio compared to RLE(around 5-6% better on average)due to its 

efficient encoding of frequent patterns. However, RLE compensates with faster processing times and lower 

energy consumption, with an advantage of approximately 20-25% in these metrics. These findings suggest that 

while Huffman Coding is ideal for maximum data reduction, RLE is better suited for edge-based systems where 
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speed and energy efficiency are critical. The encryption phase using the AES algorithm introduces only 

marginal overhead, ensuring data security without significantly impacting performance. For both compression 

methods, encryption times differed by less than 10%, and energy consumption remained consistent across both 

scenarios. This validates AES as a reliable and practical choice for securing edge-based data transmissions.  

In conclusion, the AR model emerges as the more reliable option for forecasting in dynamic environments, 

while MA serves as a simpler, resource-efficient alternative for stable datasets. RLE stands out for edge systems 

requiring quick and energy-efficient compression, whereas Huffman Coding is suitable for scenarios 

emphasizing maximum data reduction. The AES algorithm effectively secures data, complementing the 

compression methods. Future improvements could include hybrid forecasting models, adaptive compression 

algorithms that switch between RLE and Huffman based on data characteristics, and lightweight encryption 

alternatives to further optimize system performance in decentralized energy management. 

 

CONCLUSION 

This study introduces a comprehensive framework that integrates edge-based load forecasting, data 

compression, encryption, and Multi-Layer Edge Computing (MLEC) to enhance energy management in smart 

grids. The findings indicate that localized processing through edge computing significantly reduces latency 

and dependency on centralized systems, enabling real-time decision-making. The Moving Average and 

Autoregressive models effectively address forecasting needs in stable and dynamic environments, respectively, 

with the Autoregressive model achieving up to 4% higher accuracy in dynamic scenarios. Data compression 

methods, such as Run-Length Encoding (RLE) and Huffman Coding, provide complementary advantages in 

terms of processing speed and data reduction, with Huffman Coding offering approximately 5-6% better 

compression ratios. Meanwhile, the AES encryption algorithm ensures robust security with minimal 

computational overhead. Collectively, these advancements facilitate a decentralized, efficient, and secure 

energy management system. Future research could explore adaptive hybrid models and lightweight algorithms 

to further enhance performance and scalability in diverse energy management scenarios. 
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