

https://ict.bcnf.ir Page 1

Scalability and Performance in Document-Oriented NoSQL

Databases

Yousef Rahimy Akhondzadeh1,*
1 Master in Computer Engineering – Software (Department of Computer and Information Technology

Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran)

ABSTRACT

Document-based NoSQL databases have been widely accepted in modern applications due to their

flexible schemas, high scalability, and strong performance in distributed systems. This article examines how

document-oriented NoSQL databases such as MongoDB and Couchbase provide scalable and high-

performance solutions for companies that manage large volumes of unstructured or semi-structured data. We

will explore the key features of this architecture, namely scalability and performance optimization, which

enable things like horizontal scaling, replication, and indexing strategies. In addition to these, we also

analyze their use cases in different industries to show the impact of these databases in the real world on the

development of modern applications.

Keywords: Non-Relational Databases, NoSQL Databases, Document-Oriented Databases, Scalability in

Databases

1. INTRODUCTION

With the advent of big data and cloud computing, traditional relational databases often struggle to

manage the scalability and flexibility required by modern applications. Meanwhile, document-based NoSQL

databases emerged as a powerful alternative that offered schema-free data models, distributed architectures,

and the ability to scale horizontally across multiple servers. Such capabilities allowed companies to

efficiently process large volumes of semi-structured data, making them a popular choice for web

applications, content management systems, and real-time analytics platforms [5][6][13].

2. RELATED WORKS

Musbah et al. in [1] present a comparative analysis of different NoSQL databases, especially document-

oriented databases such as MongoDB and Couchbase. In this article, the researchers examine the

scalability, flexibility of the schema and the ability to manage unstructured data. In this paper, they highlight

the high scalability of document-oriented databases as a key capability and also emphasize that the

schemaless nature of MongoDB allows it to handle large data sets more efficiently than traditional relational

database management systems. Also, this article points to potential performance limitations in complex data

structures compared to relational databases.

Also in [2], Carvalho et al. provide a detailed performance measure of Couchbase, CouchDB, and

MongoDB databases. They evaluate these databases based on criteria such as query performance, data

ingestion, and scalability capabilities. These researchers found that Couchbase outperformed the rest of

these databases in heavy workloads, while MongoDB showed stronger performance in high-read scenarios.

They also note that the CouchDB replication model also supports fault tolerance, but this fault tolerance

comes at the cost of lower performance compared to Couchbase and MongoDB. At the end of this article,

https://ict.bcnf.ir Page 2

they conclude that MongoDB is more optimal for applications with complex queries and large data sets,

while Couchbase is more suitable for real-time applications.

Abhishek et al. in [3] compare different NoSQL databases focusing on scalability criteria and their use in

distributed systems. These researchers also note that document-based databases, such as MongoDB, offer

excellent horizontal scalability through partitioning, but they emphasize balancing consistency when scaling

across multiple nodes. The researchers in this paper also discuss the advantages of NoSQL in managing

unstructured data, especially for big data applications. However, they caution that performance degradation

can occur in highly concurrent environments without proper indexing.

Also, Camelia and colleagues in [4], in the form of a case study, focus on the performance criteria of

NoSQL databases with a special focus on document-oriented systems. This study emphasizes MongoDB's

strong performance in high-read environments and its ability to handle large volumes of unstructured data.

However, the researchers also found that Couchbase outperforms others in situations where high write

power is required, especially when using real-time data processing. The researchers in this article conclude

that the choice of NoSQL database should be based on the specific needs of the workload, and they also

emphasize that the MongoDB database works better for managing complex queries, while the Couchbase

database works more optimally for scenarios with low latency and high availability.

In summary, these studies provide a comprehensive view of the performance, scalability, and specific use

cases of document-oriented NoSQL databases such as MongoDB, Couchbase, and CouchDB. As in each of

the fields of scalability, performance, compatibility repetition, and use cases, researchers acted as follows:

• Scalability: Most researchers, especially Musbah et al. [1] and Abhishek et al. [3], emphasize

the scalability of document-oriented NoSQL databases, especially MongoDB and Couchbase.

They also consistently mention sharding as a key feature to achieve horizontal scalability.

• Performance: In terms of performance, Carvalho et al. [2] and Camelia et al. [4], provide

experimental criteria. According to their research, MongoDB is superior in complex and

readable query environments, while Couchbase is more suitable for heavy workloads and real-

time applications.

• Compatibility and replication: Carvalho et al. [2] in their research suggest that CouchDB has

been considered because of its replication capabilities, although it has a higher performance

cost compared to MongoDB and Couchbase.

• Uses: The consensus of all these researchers in the studies is that MongoDB is suitable for

applications that require complex queries and large-scale data analysis, while Couchbase is

ideal for real-time and low-latency applications.

3. DOCUMENT-ORIENTED NoSQL DATABASE ARCHITECTURE

Document-based NoSQL databases, such as MongoDB, Couchbase, and Amazon DocumentDB, use

documents as the main unit of data, often stored in JSON, BSON, or XML formats, which are inherently

flexible and allow the database schema to evolve over time. This flexibility, along with features such as

sharing, replication, and indexing, enable these databases to scale and perform effectively in distributed

environments. Also, their documents can contain nested fields, arrays and key-value pairs, which lead to

flexibility in the way data is modeled and stored. Some of the most prominent features of these databases are:

3.1 Data Storage and Schema Flexibility

In a document-oriented database, each document is an independent unit that can store complex

structures, including arrays and nested fields. Unlike relational databases that require predefined schemas,

document-oriented NoSQL databases allow developers to store different types of documents in a collection.

This flexibility is essential in rapidly changing application environments where the data structure changes

and evolves frequently [5].

MongoDB and Couchbase are two prominent examples that use this approach and store documents in

collections instead of relational tables. This schema-less design reduces the complexity of schema

migrations, which is a major bottleneck in traditional relational databases [6].

3.2 Horizontal Scalability

https://ict.bcnf.ir Page 3

One of the key factors that causes the acceptance of document-oriented databases is their ability to scale

horizontally. Unlike traditional relational databases that require vertical scaling (updating server

resources), NoSQL databases distribute data in the form of multiple nodes in a cluster.

For instance, MongoDB uses sharding for scalability. A method to distribute documents in different

nodes of the database, to balance the high workload. This enables it to handle large data sets by dividing

them into different shards and processing queries in parallel. In this technique, each hash contains a subset

of data and the database uses a hash key to effectively route requests [5].

Sharding is a critical architectural feature that enables document-based NoSQL databases to scale

horizontally. Horizontal scalability refers to the ability to distribute data across multiple servers (nodes)

which allows the database to manage larger data sets and higher traffic loads by adding more nodes to a

cluster [7].
MongoDB also uses a method called range-based sharing or hash-based sharing to distribute data. A

shard key determines how documents are distributed among shards and allows the system to process multiple

queries in parallel, thus improving performance and scalability. In large-scale applications such as e-

commerce platforms, this feature is critical for managing millions of transactions in distributed areas [5][8].

3.3 Repetition and Fault Tolerance

Document-based NoSQL databases ensure high availability through replication, which is actually the

process of copying data across multiple nodes. This architecture ensures fault tolerance, meaning that if one

node fails, another instance can take over without interrupting the service.

For this, MongoDB uses replica sets, where one node is designated as the primary node (responsible for

writing management) and the others act as secondary nodes. If the primary node fails, an automatic selection

occurs and one of the secondary nodes is promoted to the primary node and ensures continuous operation

[6].

Couchbase, on the other hand, uses active-active replication to ensure that all nodes are actively involved

in both read and write operations, and it improves the overall response time of the database as well as the

update time [8].

Document-based NoSQL databases also achieve scalability by replicating data in several nodes. The

replication technique improves availability and fault tolerance and ensures that if one node fails, another

node can take over without affecting the performance of the application [6].

3.4 Indexing Mechanism and Strategy

Indexes are very important for query optimization in document-oriented databases. Without an index, the

database would have to scan all the documents in a collection to find a request that matches a query, which

would become more inefficient as the data grows over time. Document-oriented databases provide different

types of indexes to ensure fast performance of queries.

For instance, MongoDB supports various types of indexes, including single-field, compound, and multi-

key indexes. This allows developers to adjust the indexing strategy based on the needs of their application. In

addition, textual and spatial indexes are also available to handle more specialized queries [5][9].

Also, Couchbase uses Global Secondary Indexes (GSI), which enable fast and distributed document

searches in large datasets. GSIs significantly improve query performance by allowing indexes to be stored

separately from the data [6][10].

An efficient indexing, especially with increasing data volume, is necessary to ensure high performance in

document-oriented NoSQL databases. Indexes allow databases to quickly retrieve documents based on field

values without scanning the entire dataset.

3.5 Data Location and Processing in Memory

Many document-oriented NoSQL databases use in-memory data processing to increase performance.

Keeping frequently accessed data in memory allows the system to prevent the database from slow disk

access, thus reducing read and write latency.

In the meantime, Couchbase also uses the technique of caching information in memory, which means that

the data is first stored in RAM and then written asynchronously on the disk. This significantly improves query

performance, especially in applications that deal more with reading data. MongoDB also uses a memory-

https://ict.bcnf.ir Page 4

mapped storage engine, which ensures that frequently accessed data remains in memory for faster retrieval

[6][11].

4. FUNCTIONAL CONSIDERATIONS

Document-oriented NoSQL databases are designed to provide high performance even when dealing with

large-scale semi-structured data. However, achieving optimal performance depends on various factors such

as efficient query processing, indexing strategies, and data distribution. Document-oriented NoSQL

databases are designed to handle large-scale workloads with minimal latency. The following sections review

basic performance considerations for document-oriented NoSQL systems:

4.1 Query Optimization

Query optimization plays an important role in improving the performance of document-oriented NoSQL

databases. Since these databases often store complex and nested documents, proper and efficient data

retrieval requires complex query planners and optimizers.

Query Planner in databases like MongoDB analyzes the query execution planning in several query

execution paths and selects the most efficient ones based on the available indicators. It minimizes execution

time and reduces system workload by analyzing query statistics and automatically selecting the fastest

execution path in a document-oriented database [6].

The way the queries are executed can have a significant impact on the performance of the database.

Complex queries including deep nested queries or large data sets may take longer to execute unless they are

optimized with appropriate indexes. MongoDB allows developers to perform complex queries with features

such as aggregate pipelines that enable filtering, sorting, and transforming data in a series of steps.

Optimizing these pipelines is necessary to ensure high performance [5].

Since document-oriented databases often manage semi-structured data, they offer flexibility in searching

nested objects and arrays. However, complex queries can degrade database performance if not properly

optimized. Query optimizers in MongoDB and Couchbase automatically select the most efficient execution

path based on the query and available indexes [5].

4.2 Location and Storage of Data in Memory

Sharding or horizontal partitioning is a performance-enhancing strategy that is used in document-

oriented NoSQL databases to divide large data sets into multiple nodes. This work reduces the load on each

server and enables parallel processing of queries, thus speeding up the response time.

In a sharded environment, ensuring that data that is accessed frequently together is in the same place can

significantly improve query performance. However, inappropriate selection of shard keys can lead to

performance problems such as hot-spotting, where one node is overloaded with requests while other nodes

are underutilized [5][7].

Also, the proper distribution of load among nodes ensures that no single node becomes a bottleneck.

MongoDB automatically balances shards to distribute the load evenly across the cluster, while Couchbase

uses static hashing to efficiently distribute data across cluster nodes [8][12].

4.3 Indexing Efficiency

The use of indexes is necessary to ensure fast data retrieval in document-oriented NoSQL databases.

Without them, the system would have to perform a full scan on a complete collection of data for each query,

which would become extremely slow over time as the data volume increases.

While indexes speed up read operations, they can also slow down write performance because the

database must update indexes every time data is modified. Excessive indexing can lead to a decrease in

database performance by consuming more disk space and memory, as well as increasing the time required

for write operations [5][8].

Modern NoSQL systems provide a variety of indexes to meet different query requirements. For example,

MongoDB supports hybrid indexes (which index multiple fields), multi-key indexes (for array fields), and text

indexes (for full-text searches). Couchbase provides global secondary indexes, which enable efficient

https://ict.bcnf.ir Page 5

distributed query execution on large datasets. Choosing the right indexing strategy for use cases is critical to

maintain database performance [9][10].

4.4 Processing and Storage in Memory

Caching mechanisms are critical to improve read performance, especially in applications with heavy

read loads where similar data is frequently accessed.

Both MongoDB and Couchbase use memory to store frequently accessed data. In MongoDB, the

WiredTiger storage engine uses memory-mapped files and ensures that data is cached for faster retrieval.

Couchbase also does this by providing an integrated in-memory cache, which improves performance by

reducing disk access.

Also, in cases where memory resources are limited, deletion and dump policies help determine which

data should remain in memory and which data should be stored on disk. The correct configuration of these

policies ensures the optimal use of memory and prevents excessive disk input and output that can reduce

database performance [5][11].

4.5 Heavy Workload and Concurrent Write

Document-based NoSQL databases often have to handle high volumes of writes, especially in

applications involving logs, real-time data streams, or IoT devices. Efficient management of concurrent

writes is the key to maintaining performance in these scenarios.

While traditional relational databases use ACID (Atomicity, Consistency, Isolation, Durability) features

to manage concurrency, NoSQL databases typically reduce these guarantees for better performance in

distributed environments. End-to-end consistency is common in document-oriented NoSQL databases,

meaning that while data updates are propagated across nodes, instant consistency is not always guaranteed.

This allows for faster writing at the cost of instant compatibility across versions [5][13].

Some NoSQL databases, such as Couchbase, support batch writes, which allow multiple write operations

to be grouped into a single transaction to reduce the overhead of frequent writes to disk. MongoDB also

supports write-to-disk concerns, allowing developers to choose the level of durability and consistency

required for write operations and further optimize speed [6][12].

Optimizing performance in document-based NoSQL databases is a multifaceted process that depends on

efficient query processing, proper indexing, and data distribution techniques such as sharing. By balancing

memory consumption, disk I/O, and concurrency controls, these databases can provide high performance

even in large-scale distributed environments. However, each performance-enhancing feature comes with

trade-offs, and developers must carefully plan their data models and indexing strategies to maximize the

benefits of NoSQL systems.

5. CHALLENGES AND LIMITATIONS

While document-oriented NoSQL databases are excellent in terms of scalability and performance, they

also create challenges. One of their key limitations is the lack of ACID transactions in distributed nodes.

While some databases such as MongoDB have introduced multi-document transactions, achieving strict

integrity in distributed environments can affect their performance [5].

In addition, indexing strategies must be carefully managed. Excessive indexing can lead to a decrease in

database performance, because the database spends more time maintaining indexes than processing actual

queries [6].

While document-based NoSQL databases offer flexibility, scalability, and performance advantages, they

also come with a set of challenges and limitations that large and international enterprises must consider:

5.1 Schema Design Complexity

One of the key advantages of document-oriented databases is their flexible schema, which can become a

challenge. The lack of a predefined schema, which if not carefully managed, can lead to inconsistency and

data duplication.

https://ict.bcnf.ir Page 6

Since NoSQL databases do not enforce relational constraints, there can be a significant number of

repetitions of data in documents. This may lead to data anomalies, especially in large-scale applications

when updates are applied inconsistently [6][13].

While NoSQL databases make it possible to make schema changes quickly, these changes can become

complex over time. If applications also grow during this complexity, tracking different document structures in

a collection can lead to high maintenance costs [5][6].

5.2 Query Complexity and Performance Trade-Off

Document-oriented databases, while optimized for fast read and write operations, often lack the rich

search capabilities of traditional relational databases.

NoSQL databases such as MongoDB and Couchbase do not support complex relations across multiple

collections like relational databases. Instead, developers are often forced to denormalize data (store

redundant and duplicate information), which can lead to more complex queries and poorer performance,

especially for heavy applications [8].

Also, while indexing improves query performance, creating and maintaining multiple indexes can slow

down write operations. This trade-off between query optimization and write performance is a critical

consideration in use cases where both high write power and efficient query are required [6].

5.3 Limited ACID Transactions

NoSQL databases, especially document-oriented systems, often prefer performance and scalability over

the strict features of ACID.

Many NoSQL databases, such as MongoDB, offer ultimate compatibility in distributed environments.

This means that while data is eventually uniform across all nodes, strong consistency (instant consistency)

often sacrifices high performance. In scenarios that require high stability (such as financial transactions),

this limitation can be a problem [5][12].

Also, while recent versions of some NoSQL databases have introduced multi-document transactions,

these features are not as mature or optimized as those in relational databases. Transactions in NoSQL are

often limited in scope and range of performance and may negatively affect database performance, especially

in large-scale data deployments [6][8].

5.4 Complexity of Operations in Distributed Systems

Due to the complexity of managing multiple nodes as well as ensuring data availability and fault

tolerance, operating and maintaining large distributed NoSQL systems can be challenging.

Sharding and load balancing enable horizontal scalability, but create complexity in ensuring proper data

distribution and avoiding Hot-Spots (overloading certain nodes). Incorrect selection of shard keys can lead

to unbalanced distribution of data, which itself leads to the creation of performance bottlenecks [6][7].

Also, data replication ensures availability and high fault tolerance, but on the other hand, it also

increases the complexity of managing consistency in nodes. With the increase in the number of repetitions,

the complexity of managing network partitions, failures and ensuring data stability when nodes fail also

increases [5][8].

5.5 Security and Compliance Challenges

NoSQL databases often face unique security and compliance challenges compared to traditional

relational databases. While most modern NoSQL databases offer security features such as authentication

and encryption, many companies still struggle to meet industry-specific compliance requirements.

Historically, NoSQL databases have been criticized for lacking built-in security features, such as role-

based access control (RBAC) and encryption. Although recent updates have added many of these features,

still implementing a strong security model in distributed NoSQL environments can be complex [8].

Also, for industries with strict compliance regulations (e.g., healthcare systems, financial systems),

maintaining proper auditing, data encryption, and access control can be challenging. Document-based

NoSQL databases may not always provide the fine-grained auditing features required to comply with

regulations, such as GDPR or HIPAA [5][6].

https://ict.bcnf.ir Page 7

5.6 Maturity of Tools and Ecosystem

While the ecosystems around document-based NoSQL databases have grown significantly, but they still

lag behind traditional relational databases in certain areas, especially when it comes to third-party tools and

integrations.

NoSQL databases such as MongoDB and Couchbase offer a growing number of development tools,

including visual interfaces and command-line tools. However, compared to mature SQL ecosystems, the

variety and depth of these tools may still be lacking. For instance, monitoring, debugging, and optimizing

large-scale NoSQL deployments often require specialized knowledge and third-party solutions, which may

not be as strong as existing tools for relational databases such as MySQL, Oracle or PostgreSQL [5][13].

Also, while document-oriented NoSQL systems integrate well with modern development stacks, they may

not always have the same level of support for enterprise-grade tools such as ETL pipelines, business

intelligence and analytics tools or platforms. Since companies increasingly need deep integration with

various tools, NoSQL databases may be used to keep up with relational databases in terms of supporting

legacy and proprietary systems [6][8].

Despite the advantages of flexibility, scalability and high performance, document-oriented NoSQL

databases have many challenges and limitations. These limitations include complexity in schema design,

trade-off between read and write performance, limited support of ACID transactions, and operational

challenges in distributed systems. In addition, the maturity of tools and compliance concerns can also create

barriers, especially for companies operating in certain industries.

6. CONCLUSION

Document-based NoSQL databases offer compelling benefits for companies looking to scale their

applications and efficiently manage large data sets. Their ability to handle horizontal scalability, data

replication across nodes, and performance optimization through efficient indexing make them ideal for

modern applications. However, to ensure optimal results in production environments, careful attention must

be paid to the balance of data stability, availability, and performance.

As the volume of data continues to grow and the demand for real-time processing increases, document-

based NoSQL databases are likely to play an important role in shaping the future of database management in

large and international enterprises.

REFERENCES

[1] [1] Musbah J. Aqel, Aya Al-Sakran, Mohammad Hunaity, “A Comparative Study os NoSQL

Databases”, Journal of Bioscience Biotechnology Reasearch Communications (BBRC) Vol.

12(1), 2019, DIO:10.21786/bbrc/12.1/3.

[2] [2] Carvalho, I. ; Sá, F.; Bernardino, J. “Performance Evaluation of NoSQL Document

Databases: Couchbase, CouchDB, and MongoDB”. Algorithms 2023, 16, 78.

https://doi.org/10.3390/a16020078.

[3] [3] Abhishek Prasad, Bhavesh N. Gohil, “A Comparetive Study of NoSQL Databases”,

International Journal of Advanced Research in Computer Science, 5(5), P.P.(170-176), June,

2014.

[4] [4] Camelia-Florina Andor, Bazil Parv, “NoSQL Database Performance Benchmarking – A

Case Study”, Studia University Babes-Bolyai, Informatica, Vol. LXIII, No. 1, 2018,

DIO:10.24193/subbi.2018.1.06.

[5] [5] Gomes, C., de O. Junior, M.N., Nogueira, B. et al. NoSQL-based storage systems: influence

of consistency on performance, availability and energy consumption. J Supercomput 79, 21424–

21448 (2023). https://doi.org/10.1007/s11227-023-05488-6.

[6] [6] “NoSQL Market Forecast 2023-2030 | MongoDB, Google, Oracle”, Internet:

https://www.digitaljournal.com/pr/news/cdn-newswire/nosql-market-forecast-2023-2030-

mongodb-google-oracle, 2023

[7] [7] “Sharding in MongoDB”, MongoDB Documentation (2023).

https://ict.bcnf.ir Page 8

[8] [8] “The Rise of NoSQL Databases: A Guide for Modern Applications”, Internet:

https://ericvanier.com/the-rise-of-nosql-databases-a-guide-for-modern-applications

[9] [9] “MongoDB Indexes”, MongoDB Documentation (2023).

[10] [10] “Index Storage Settings”, Couchbase Documentation (2023).

[11] [11] “Memory and Storage”, Couchbase Documentation (2023).

[12] [12] “The Importance of Database Performance for Developers”, Internet:

https://ericvanier.com/the-importance-of-database-performance-for-developers

[13] [13] “SQL vs. NoSQL: The Differences Explained + When to Use Each”, Internet:

https://www.coursera.org/articles/nosql-vs-sql

